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Abstract
Genomic selection (GS) is a breeding method that uses marker–
trait models to predict unobserved phenotypes. This study devel-
oped GS models for predicting traits associated with resistance 
to Fusarium head blight (FHB) in wheat (Triticum aestivum L.). We 
used genotyping-by-sequencing (GBS) to identify 5054 single-
nucleotide polymorphisms (SNPs), which were then treated as 
predictor variables in GS analysis. We compared how the pre-
diction accuracy of the genomic-estimated breeding values (GE-
BVs) was affected by (i) five genotypic imputation methods (ran-
dom forest imputation [RFI], expectation maximization imputation 
[EMI], k-nearest neighbor imputation [kNNI], singular value de-
composition imputation [SVDI], and the mean imputation [MNI]); 
(ii) three statistical models (ridge-regression best linear unbiased 
predictor [RR-BLUP], least absolute shrinkage and operator selec-
tor [LASSO], and elastic net); (iii) marker density (p = 500, 1500, 
3000, and 4500 SNPs); (iv) training population (TP) size (nTP = 
96, 144, 192, and 218); (v) marker-based and pedigree-based 
relationship matrices; and (vi) control for relatedness in TPs and 
validation populations (VPs). No discernable differences in pre-
diction accuracy were observed among imputation methods. The 
RR-BLUP outperformed other models in nearly all scenarios. Accu-
racies decreased substantially when marker number decreased to 
3000 or 1500 SNPs, depending on the trait; when sample size 
of the training set was less than 192; when using pedigree-based 
instead of marker-based matrix; or when no control for related-
ness was implemented. Overall, moderate to high prediction 
accuracies were observed in this study, suggesting that GS is a 
very promising breeding strategy for FHB resistance in wheat.

Originally proposed by Meuwissen et al. (2001) for 
animal breeding, GS predicts breeding values of 

individuals based on genome-wide molecular markers. 
It can be considered as a form of marker-assisted selec-
tion in which all markers are used to calculate GEBVs. 
It is assumed in GS that the quantitative trait loci (QTL) 
underlying the trait of interest are in linkage disequi-
librium with at least one marker and that all the genetic 
variance can be explained by markers (Goddard and 
Hayes, 2007). For this reason, GS is particularly prom-
ising for predicting quantitative, complex traits where 
many small effect loci contribute to phenotypic variation. 
In GS, marker effects are estimated from a TP, for which 
phenotypes and genotypes are available. Marker effects 
are then used to predict phenotypes in a set of individu-
als, called the breeding population, which will only be 
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genotyped. Based on GEBVs, individuals can be selected 
before being tested in field experiments, potentially 
speeding up the breeding cycle (Jannink et al., 2010; Hef-
fner et al., 2009). Several factors can impact the accuracy 
of GS models including marker density, QTL number, 
sample size, and genotypic imputation methods (Zhong 
et al., 2009; Heffner et al., 2011; Rutkoski et al., 2013).

Fusarium head blight is the single most important 
wheat disease in the US Midwest, causing yield losses, 
reduction of grain quality (Dexter et al., 1996), and grain 
contamination because of mycotoxins. Fusarium gra-
minearum Schwabe (teleomorph: Gibberella zeae Schw. 
Petch) is the predominant pathogen that causes FHB of 
wheat and barley (Hordeum vulgare L.) in North Amer-
ica. Classic genetic studies showed that wheat resistance 
to FHB is quantitatively inherited (Van Ginkel et al., 
1996; Liu et al., 2005). Moreover, previous work suggests 
that the sources of genetic variation for FHB resistance 
are predominantly additive (Bai et al., 2000; Snijders, 
1990), indicating that accumulation of resistance genes 
may be possible. Selection for FHB resistance is per-
formed mainly using phenotypic data, and because FHB 
resistance is strongly influenced by the environment, 
inaccurate measurements of true genetic resistance of 
an individual breeding line frequently occur. In addi-
tion, phenotyping for FHB resistance is a laborious task 
requiring mist irrigation systems in the field or green-
house capabilities. Some measurements, like mycotoxin 
analysis, are only obtained after harvest and are both 
time consuming and expensive. In this context, selection 
based on GEBVs instead of phenotypes could improve 
the breeder’s ability to select individuals with superior 
FHB resistance. Such an approach could also increase 
gain per unit cost and time (Heffner et al., 2010).

The availability of genotypic information has greatly 
improved over the past few decades; however, phenotyp-
ing capabilities have not kept pace. As a consequence, 
breeders are now facing the so-called “large p, small n 
problem” (i.e., p >> n) when applying markers to predict 
phenotypes. In this situation the number of predic-
tor variables is larger than the number of observations, 
resulting in an infinite number of marker-effect esti-
mates (Gianola, 2013). To address this problem, several 
penalized regression approaches have been proposed for 
GS models. Ridge-regression best linear unbiased pre-
diction is based on an infinitesimal model in which all 
markers are equally shrunken toward zero. This model 
sets markers to be random effects with a common vari-
ance (Meuwissen et al., 2001). The LASSO performs 
continuous shrinkage and variable selection simultane-
ously. In the p >> n setting, LASSO will select at most n 
variables and set the effects of the remaining predictors 
equal to zero (Tibshirani, 1996). The elastic net is a com-
bination of both RR-BLUP and LASSO, where the pen-
alty is a weighted average of the penalties from these two 
approaches (Zou and Hastie, 2005).

In a previous publication, Rutkoski et al. (2012) com-
pared GS models for FHB-related traits in wheat using 

2402 diversity array technology (DArT) markers and 38 
single-sequence repeat (SSR) markers. This study involved 
germplasm from 18 different breeding programs at the 
United States and Canada. Heffner et al. (2011) used 1158 
DArT markers to compare genomic-selection models, 
marker-assisted selection, and phenotypic selection for 
agronomic traits using germplasm from the Cornell Uni-
versity wheat breeding program (Ithaca, NY). Both stud-
ies showed GS as a promising strategy for wheat breeding.

With the advent of high-throughput SNP genotyp-
ing methods, high-density genome-wide marker sets 
are becoming viable in several crop species, making GS 
a practical approach for predicting complex traits. A 
robust, high throughput genotyping method called GBS 
has been applied to wheat with promising results (Poland 
et al., 2012b). Briefly, this technique consists of reducing 
genome complexity using restriction enzymes that target 
gene-rich regions (Elshire et al., 2011). The targeted seg-
ments are then polymerase chain reaction (PCR) ampli-
fied, barcoded, and sequenced in a multiplexed reaction. 
The protocol can be modified to accommodate a combi-
nation of enzymes, as performed in wheat and barley by 
Poland et al. (2012a). Genotyping-by-sequencing typi-
cally generates many thousands of SNPs with minimum 
of ascertainment bias, a common problem of SNP chips.

Resistance to FHB is an important breeding objec-
tive in most programs in the Corn Belt, including the 
soft red winter wheat program of the University of Illi-
nois at Urbana–Champaign. As such, our study aimed 
to develop GS models for FHB-related parameters, using 
GBS. We compared the accuracy of three penalized mod-
els: RR-BLUP, LASSO, and elastic net. We also inves-
tigated how the prediction accuracies were affected by 
imputation methods, number of SNP markers, size of the 
training population, marker-based vs. pedigree-based 
relationship matrices, and controlling for relatedness.

Materials and Methods

Plant Material and Phenotypic Data
The germplasm used in this study consisted of 273 breed-
ing lines derived from 233 different crosses. A total of 185 
lines came from the University of Illinois soft red winter 
wheat program, and the remaining 88 lines were from 
17 programs across the midwestern and eastern United 
States. Of these 88 lines, 50 have been used as parents in 
our breeding program. Hence, this collection is represen-
tative of the genetic diversity currently being explored at 
the University of Illinois. Measurements associated with 
FHB resistance were collected from a field nursery dur-
ing 2011, 2013, and 2014 field seasons. Because of drought 
conditions, no phenotypic data were obtained in 2012. 
Each experiment was set up as a randomized complete-
block design with two replicates. The experimental unit 
consisted of a 1-m-long single row. Because not all of the 
lines were present in all years, the experiment was ana-
lyzed as an unbalanced design. Grain spawn inoculum 
was prepared with a mixture of 10 different isolates of F. 
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graminearum collected throughout Illinois over several 
years. Agar plugs containing the isolates were placed in 
carboxylmethyl-cellulose liquid media and allowed to 
grow and sporulate (Tuite, 1969). After 7 d, a conidial 
suspension was obtained and mixed with autoclaved 
maize (Zea mays L.) grain. Colonized grains were then 
spread in the field at a rate of approximately 287 kg ha−1 
and 2 to 4 wk before anthesis. The field was mist irrigated 
three times per day during 6 wk starting 2 wk before 
the first wheat line headed. The following parameters 
were used to evaluate FHB resistance: incidence (INC), 
severity (SEV), FHB index [FHBdx; (incidence  sever-
ity)/100], Fusarium-damaged kernels (FDK), incidence, 
severity, and kernel quality index [ISK; (0.3  incidence 
+ 0.3  severity + 0.4  FDK)], and deoxynivalenol 
concentration (DON). Incidence was estimated as the 
percentage of infected heads, irrespective of the amount 
of disease on each head. Severity was visually estimated 
as the percentage of infected spikelets in a wheat head. 
Incidence and severity are used to quantify the resistance 
to penetration and spread of the disease, respectively, 
and they are also known as type I and type II resistance 
(Schroeder and Christensen, 1963). Fusarium-damaged 
kernels are a visual estimate of the percentage of F. 
graminearum-damaged, tombstone kernels using known 
standards, and it is often classified as type III resistance 
(Mesterházy, 1995; Mesterházy et al., 1999). The FHBdx 
and ISK are disease indices routinely used by breed-
ers when performing selection. The SEV and INC were 
recorded 1 m after the heading date of each breeding 
line, whereas FDK and DON were recorded after harvest. 
Resistance to toxin accumulation has been classified as 
type IV resistance (Miller et al., 1985) and deoxynivale-
nol is by far the most important mycotoxin produced by 
F. graminearum in wheat. Its concentration was deter-
mined by gas chromatography at the Department of 
Plant Pathology at the University of Minnesota.

In this study, the phenotypic data came from an 
unbalanced design, in which not all breeding lines were 
present in all years. For this reason, best linear unbiased 
predictions (BLUPs) were calculated instead of best lin-
ear unbiased estimators. For each line and each trait, 
BLUPs were obtained using PROC MIXED SAS version 
9.4 (SAS Institute, 2013), according to Eq. [1]:

Yijkl = � + yeari + block(year)ij + linek  
+ headingijkl + (year  line)ik + ijkl         [1]

in which Yijkl is the observed phenotype,  is the over-
all mean, yeari is the random effect of the ith year, 
block(year)ij is the random effect of jth block nested 
within the ith year, linek is the random effect of the kth 
line, headingijkl is a quantitative covariate trait treated 
as fixed and defined as the Julian date on which heading 
was observed for the lth replicate of the kth line in the 
jth block within the ith year, (year  line)ik is the random 
effect of the interaction between the ith year and kth 

line, and ijkl is the random error term. Heading date was 
included as a covariate (Miedaner et al., 2006) because it 
is known to have an important effect on FHB resistance 
measurements, especially when the inoculation method 
mimics natural infection (grain spawn, as used in this 
study) (Buerstmayr et al., 2009). Furthermore, heading 
date was correlated with each of the parameters used to 
quantify FHB resistance.

Genotypic Data
DNA was extracted from 5-d-old leaves using a cetyl-
trimethyl ammonium bromide–chloroform protocol. 
After quantification, the GBS libraries were constructed 
according to Poland et al. (2012b) with a few modifica-
tions. For genomic complexity reduction, we used three 
two-enzyme combinations: PstI-HF-MspI, PstI-HF-
HinP1I, and PstI-HF-BfaI. The enzyme PstI-HF (CTG-
CAG) is a rare cutter, whereas MspI (CCGG), HinP1I 
(GCGC), and BfaI (CTAG) are common cutters. A differ-
ent set of barcodes was used for each enzyme combina-
tion. Sequence data were obtained from 96-plex Illumina 
HiSeq2000 runs (W.M. Keck Center for Comparative 
and Functional Genomics).

The SNPs were called using the UNEAK pipeline (Lu 
et al., 2013) using a population-based approach similar to 
the one described by Poland et al. (2012a). A mismatch 
of 1 bp in a 64 bp tag was allowed when aligning the tag 
sequences using Burrows–Wheeler Alignment (Li and 
Durbin, 2009). Putative SNPs were identified from tags 
that differed by 1 bp and then filtered with the Fisher’s 
exact test (p < 0.001), which tests whether two alleles are 
independent in a population of inbred lines. The minor 
allele frequency cutoff was set to 5%, and SNPs with 
more than 20% missing data were eliminated from the 
analysis. Additionally, SNP pairs exhibiting squared 
Pearson correlation coefficients exceeding r2 = 0.8 were 
excluded. Subsequently, a total of 5054 SNPs were used 
for the downstream analyses.

Imputation Methods
Genotypic missing values were imputed using five differ-
ent methods: MNI, kNNI (Troyanskaya et al., 2001), EMI 
(Dempster et al., 1977), RFI (Stekhoven and Bühlmann, 
2011), and SVDI. These methods are described in detail 
by Rutkoski et al. (2013). The imputations were per-
formed using the R scripts provided by the same authors. 
These analyses were performed on a Dell Precision with 
CORE i7 vPro 3.00GHz, 8GB RAM, 700GB HD. The four 
imputation methods were compared in terms of GS accu-
racy for all traits using the RR-BLUP model. All com-
parison tests were performed in SAS PROC GLM using 
the Ryan–Einot–Gabriel–Welch Q (REGWQ) multiple-
testing correction at  = 0.05. The REGWQ correction 
conservatively controls the familywise error.

Assessing the Level of Structure of the Population
Population structure is an important factor in GS as 
it can affect the prediction of breeding values (Lipka 
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et al., 2014; Isidro et al., 2015). Biased estimates of GS 
accuracy can be obtained when population structure is 
not taken into account (Riedelsheimer et al., 2013). For 
these reasons, the level of structure of the germplasm 
was assessed before running any GS analyses. Using the 
5054 SNPs obtained from the GBS protocol, a principal 
component analysis was performed in JMP Genomics 
7 (SAS Institute, 2014) to detect population structure in 
this collection of lines. Additionally, the same SNPs were 
used to assess the relatedness among the individuals by 
calculating a relationship (K) using the A.mat function 
of the rrBLUP package (Endelman, 2011) in the R pro-
gramming language.

Calculation of Genomic-Estimated  
Breeding Values
Genomic-estimated breeding values were calculated by 
the following general equation (Lorenz et al., 2011):

( )
=

= bå
1

p

i ik k
k

g x x  [2]

where g( ) is a function relating phenotypes to genotypes, 
xik is the score of the kth SNP (coded additively as −1, 0, or 
1) for the ith individual, and k is the effect of the kth SNP. 
For each trait, we tested three models: RR-BLUP (Hoerl 
and Kennard, 1970; Meuwissen et al., 2001), LASSO (Tib-
shirani, 1996), and elastic net (Zou and Hastie, 2005). 
Shrinkage models differ from ordinary least square (OLS) 
regression by adding a penalty to the cost function. If in 
OLS regression the cost function is represented by the sum 
of squared residuals (i.e., å 2

ie ), in shrinkage models the 
general cost function is given by Eq. [3]:
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where  is the regularization parameter, and the term 
q is equal to 2 for RR-BLUP, 1 for LASSO, and 0 < q 
< 1 for elastic net (Lorenz et al., 2011). While in OLS 
regression the parameter estimators are calculated with 

b
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2argmin Y X , the parameter estimators for RR-
BLUP, LASSO, and elastic net are given by Eq. [4–6], 
respectively:
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, and  
 0 is the tunning (penalty or regularization) parameter, 
which regulates the strength of shrinkage of the esti-
mates. The L1 part is responsible for automatic variable 
selection, whereas the L2 part does grouped selection, 
encouraging grouping of highly correlated variables. The 
expression 

b
arg min  refers to the solution of coefficients 

 that minimizes the equation inside the brackets. The 
terms 1 and 2 refer to the tunning parameters associ-
ated with the L1– and L2–norm penalties (Heslot et al., 
2012; Ogutu et al., 2012). The rr-BLUP package (Endel-
man, 2011) was used to conduct RR-BLUP, while LASSO 
and elastic net were conducted in the glmnet R package 
(Friedman et al., 2010).

Genomic Selection Prediction Accuracies
For each GS model and trait, the prediction accuracy was 
calculated as follows:

( )
2

GEBV:PEBVr

h
, [7]

where r is the Pearson’s correlation between the GEBVs 
and the phenotypically estimated breeding values 
(PEBVs) in the VP (Dekkers, 2007; Albrecht et al., 2011; 
Zhao et al., 2012), and h2 is the broad-sense heritability 
on a line-mean basis (Fehr, 1991). The variance compo-
nents estimated from PROC MIXED in SAS (described 
in Plant Material and Phenotypic Data section) were used 
to calculate these heritabilities.

Number of Single-Nucleotide  
Polymorphism Markers
The number of markers used in GS has a strong impact on 
the time required to run each analysis. Thus, we wanted to 
assess how a reduction on the number of markers would 
impact the GS accuracies. Sixty randomly sampled marker 
datasets, each consisting of either 500, 1500, 3000, or 
4500 SNPs, were drawn from the original genotypic data 
of 5054 SNPs. For each combination of GS model (RR, 
LASSO, and elastic net), marker set, and trait, GS was 
performed using fivefold cross validation, resulting in five 
values of prediction accuracy for each of the 60 runs. For 
each trait, the mean prediction accuracy was compared 
among GS models for the marker sets containing the same 
number of SNPs and between numbers of SNPs within the 
same GS model. The exact same folds were used to com-
pare the prediction accuracy of different GS models.

Training Population Size
In a cross-validation scheme, marker effects estimated 
from the TP are used to calculate GEBVs for individu-
als in the VP. As the TP size increases, the precision 
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of the marker effects increases, thus resulting in more 
accurate phenotypic predictions. Therefore, we assessed 
the impact of the TP size (nTP = 96, 144, 192, and 218) on 
prediction accuracy for each of the parameters used to 
quantify FHB resistance. Ideally, multiples of 96 would 
have been selected for nTP because 96-well plates are used 
for genotyping; however, only 273 lines were available for 
this study and 55 lines were set aside for the VP.

Pedigree-Based versus Marker-Based 
Relationship Matrices
Since the pedigree of the breeding lines was available, we 
calculated a pedigree-based relationship (A) matrix and 
compared it with a marker-based kinship (K) matrix in 
terms of genomic prediction accuracy. The A matrix was 
calculated using the coancestry coefficient (f) (Bernardo, 
2010), using pedigree records going back to grandparents, 
and the K matrix was obtained using the A.mat function 
in the R package rrBLULP (Endelman, 2011) with all 5054 
SNPs. The kin.blup function of the same package was 
used to obtain the GEBVs with both matrices.

Cross-Validation Scheme
All analyses were performed using a fivefold cross-vali-
dation scheme, in which the 273 breeding lines are ran-
domly divided into five groups, four groups being used in 
the TP for marker effect estimation and one group used 
in the VP. Each analysis was repeated using 60 random 
samples. As shown by Ly et al. (2013), overestimated 
genomic prediction accuracies can be obtained if closely 
related lines are present in both TP and VP. To avoid 
such situation, genetically similar lines were grouped 
into clusters using the k-means clustering algorithm 
(Hartigan and Wong, 1979) on marker data, as imple-
mented by Ly et al. (2013). A total of 55 (total number of 
breeding lines/5) clusters were obtain in JMP Pro 12 (SAS 
Institute, 2015). Lines belonging to the same cluster were 
present in either VP or TP, not in both simultaneously.

Throughout this study, all analyses were performed 
with control for relatedness in both sets, except in one 
situation: when we compared controlling for relatedness 
(clusters) with a situation in which genetically similar lines 
were allowed to be in both TP and VP (random). Standard 
error of mean prediction accuracy was calculated from the 
averaged accuracy values across the five folds.

Genomic-estimated Breeding Values and 
Phenotypically Estimated Breeding Values
After determining the best imputation method, GS 
model, SNP number, TP size, A or K matrix, and control-
ling or not for relatedness in the TP and VP, we used five-
fold cross validation to estimate the mean effect of each 
SNP. Specifically, GEBVs were obtained for all 273 lines 
by multiplying the genotypic matrix by a vector contain-
ing the mean effect of each marker and adding the grand 
mean. As a final step, the bias of the predictions was esti-
mated as the slope (b) of the linear regression of PEBVs on 
GEBVs, as performed by Zhang et al. (2014).

Results

Genotypes, Structure, and Imputation Methods
More than 30,000 SNPs were called in this collection of 
breeding lines using the UNEAK pipeline. After applying 
a Fisher’s exact test cutoff (p < 0.001), a cutoff of no more 
than 20% missing data and a minor allele frequency cut-
off of >5%, the number of SNPs was reduced to 5054 with 
12.57% overall missing data.

No clear genetic structure was detected in this 
population, as revealed by Fig. 1. This finding is not sur-
prising, as 86% of the lines belong to the University of 
Illinois breeding program or have been used in its cross-
ing block. This low level of population structure was also 
detected by the principal component analysis, with the 
first and second principal components explaining only 
4.6 and 2.8% of the total variability, respectively.

Four imputation methods were used to generate dif-
ferent genotypic data sets, which were then compared 
in terms of GS prediction accuracy (as determined from 
fivefold cross validation). As shown in Fig. 2, the methods 
performed equally well for all traits. The EMI method was 
numerically superior for two traits (INC and ISK), kNNI 
was superior for three traits (DON, FHBdx, and SEV), 
and SVDI resulted in numerically higher accuracies for 
FDK. Although no statistically significant difference was 
detected among the imputation methods for most traits, 
the methods differed considerably in terms of computa-
tion time required to impute missing genotypic data, 
with RFI being by far the most time demanding (>8 h), 
followed by EMI (1 min, 10 s), SVDI (<1 min), kNNI (<1 
min), and MNI (<0.5 min). In a study involving five pop-
ulations and a super-computer set, Rutkoski et al. (2013) 
also found the RFI method to be substantially more 
computationally demanding than the other methods. We 
decided to use the EMI approach for subsequent analysis 
because it gave numerically higher accuracies for two 
traits, including ISK, which is heavily used for selections 
at the University of Illinois’ wheat breeding program. In 
addition, it was not very computationally demanding, and 
it has been used in other wheat GS publications (Poland et 
al., 2012a; Lado et al., 2013; Rutkoski et al., 2013).

Genomic Selection Models and Single-
Nucleotide Polymorphism Number
Moderate to high values of cross-validated accuracies 
were observed for all traits, with the highest accuracies 
observed for FDK, ranging from 0.67 to 0.82, and the low-
est for SEV, ranging from 0.35 to 0.48 (Table 1). As a gen-
eral trend, accuracies increased with the number of SNPs, 
albeit at different rates depending on the GS model and 
trait (Fig. 3). For instance, a plateau was observed for ridge 
regression after 1500 (INC, FDK, ISK, and DON) or 3000 
SNPs (FHBdx). The LASSO and the elastic net behaved 
very similarly to each other, showing a different pattern 
from the RR-BLUP. No plateau was observed when they 
were used for INC and FDK. For all three models, the trait 
with the least increase in accuracy was ISK.
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For the same number of SNPs, RR-BLUPs outper-
formed LASSO and elastic net for all traits, except INC 
(SNP number equal to 4500). According to Zou and 
Hastie (2005), elastic net is expected to outperform the 
LASSO when p >> n. In this study, that was indeed the 
case in most of the cases, but the differences among these 
models were negligible. Considering the overall perfor-
mance of the GS models, RR-BLUP was selected as the 
model of choice for subsequent analyses.

Training Population Size
Increasing the size of the TP resulted in higher accura-
cies for all traits (Fig. 4). For most traits, the greatest 
increase occurred when the TP changed from 96 to 144 
breeding lines when, on average, accuracies were boosted 

by 11.2% across all traits. The rate of gain decreases as 
the TP size increases, reaching a plateau between 192 
and 218 for all traits except SEV. Among all traits, FDK 
showed the highest accuracy values, followed by ISK 
and DON. Even with only 96 individuals in the TP, FDK 
showed mean accuracy of 0.75. The lowest accuracies 
were obtained for SEV, ranging from 0.33 (nTP = 96) to 
0.48 (nTP = 218). In a study with agronomic and quality 
traits in wheat, Heffner et al. (2011) reported a decrease 
of the mean accuracy across all traits by 30% when nTP 
decreased from 288 to 96, which is an average reduc-
tion of 0.156% per individual removed from the TP. In 
our case, the mean decreased by 16.82% by changing 
nTP from 218 to 96, resulting in an average reduction of 
0.138% per individual.

Figure 1. Heat map of the marker-based kinship (K) matrix for 273 wheat breeding lines. Matrix obtained from 5054 SNPs. Rows and 
columns represent the breeding lines.
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Pedigree-Based versus Marker-Based 
Relationship Matrices
Genomic prediction accuracies obtained with the 
K matrix were significantly higher than accuracies 
obtained with the A matrix for all traits measured (Fig. 
5). The largest difference was observed for ISK, with val-
ues of accuracy changing from 0.42 (A) to 0.73 (K). Simi-
lar differences were found for FHBdx and FDK. At the 
same time, DON showed the smallest difference, increas-
ing from 0.46 (A) to 0.63 (K). Across all traits, accuracy 
changed from 0.36 to 0.63, a boost of 72.5%. All differ-
ences were significant according to the REGWQ multiple 
testing correction at  = 0.05.

Controlling for Relatedness in Training and 
Validation Populations
With the k-means clustering method, genetically similar 
lines were grouped in the same clusters, and the folds for 
cross validation were created out of the clusters. By doing 
so, full-sibs and half-sibs were not allowed to be in both 
TP and VP simultaneously. This scheme (cluster) resulted 
in significant reductions in genomic prediction accuracy 
values when compared with the situation with no control 
for relatedness in both sets (random) (Fig. 6). The largest 
reductions were observed for DON and FHBdx (15%), and 
the smallest were found for FDK and SEV (5% and 9.5%, 
respectively). Averaged across all traits, genomic prediction 
accuracies showed a 10% reduction, from 0.72 (random) to 
0.64 (cluster). The differences were significant according to 
the REGWQ multiple testing correction at  = 0.05.

Genomic-Estimated Breeding Values and 
Phenotypically Estimated Breeding Values
For each trait, GEBVs were calculated using the same 
imputation method (EMI), the best GS model (RR-
BLUP), the largest training population size (nTP = 218), 
the K matrix, and control for relatedness in TP and VP 
in a fivefold cross validation scheme. When the corre-
sponding GEBVs were plotted against the PEBVs for each 
trait, the values were evenly distributed around the refer-
ence line with an intercept of zero and slope of one, with 
higher agreement for the observations toward the middle 
of both distributions. The plots for ISK and DON are 
presented in Fig. 7. The fitted linear regression of PEBVs 
on GEBVs obtained estimated slope of approximately b = 
1 for all traits, suggesting little to no bias in our GEBVs 

Figure 2. Fivefold cross-validated genomic selection accuracies 
for six traits associated with Fusarium head blight (FHB) resis-
tance and four imputation methods. Methods receiving the same 
letter do not differ according to the Ryan–Einot–Gabriel–Welch 
multiple comparison test at  = 0.05 level. EMI, expectation max-
imization imputation; kNNI, k-nearest neighbor imputation; MNI, 
mean imputation; RFI, random forest imputation; SVDI, singular 
value decomposition imputation; DON, deoxynivalenol concen-
tration; FDK, Fusarium -damaged kernels; FHBdx, FHB index; 
INC, incidence; ISK, incidence, severity and kernel quality index; 
SEV, severity. Genomic-estimated breeding values estimated 
using ridge regression best unbiased linear prediction, 218 lines 
in the training population, and 55 lines in the validation popula-
tion. Error bars represent 1 standard error of the mean.

Table 1. Fivefold cross-validated prediction accuracies 
( standard error of the mean) for Fusarium head 
blight-related traits according to genomic selection 
model and marker density (single-nucleotide polymor-
phisms [SNPs]).

Trait† SNPs RR‡ NET§ LASSO¶

SEV 4500 0.481  0.006 A#a†† 0.400  0.007 Ba 0.396  0.007 Ba
3000 0.472  0.006 Aa 0.397  0.010 Ba 0.396  0.010 Ba
1500 0.446  0.08 Ab 0.380  0.011 Bab 0.380  0.009 Bab
500 0.390  0.010 Ac 0.354  0.013 Ab 0.353  0.013 Ab

INC 4500 0.599  0.006 Ba 0.625  0.009 Aa 0.629  0.009 Aa
3000 0.582  0.008 Aa 0.590  0.010 Aab 0.593  0.011 Aab
1500 0.573  0.008 Aa 0.567  0.013 Ab 0.569  0.013 Ab
500 0.526  0.009 Ab 0.507  0.015 Ac 0.507  0.015 Ac

FHBdx 4500 0.516  0.007 Aa 0.446  0.009 Ba 0.446  0.009 Ba
3000 0.519  0.006 Aab 0.448  0.008 Ba 0.451  0.009 Ba
1500 0.493  0.007 Ab 0.428  0.010 Bab 0.424  0.010 Bab
500 0.425  0.008 Ac 0.399  0.012 Ab 0.401  0.012 Ab

FDK 4500 0.819  0.007 Aa 0.749  0.009 Ba 0.749  0.009 Ba
3000 0.812  0.006 Aa 0.702  0.011 Bb 0.705  0.010 Bb
1500 0.805  0.007 Aa 0.710  0.009 Bb 0.708  0.009 Bb
500 0.750  0.008 Ab 0.674  0.013 Bb 0.676  0.013 Bb

ISK 4500 0.734  0.005 Aa 0.632  0.007 Ba 0.634  0.007 Ba
3000 0.725  0.005 Aa 0.630  0.008 Ba 0.630  0.007 Ba
1500 0.720  0.007 Aab 0.631  0.011 Ba 0.631  0.011 Ba
500 0.702  0.007 Ab 0.603  0.009 Ba 0.605  0.008 Ba

DON 4500 0.638  0.005 Aa 0.532  0.008 Ba 0.528  0.007 Ba
3000 0.627  0.007 Aa 0.519  0.009 Ba 0.514  0.009 Ba
1500 0.622  0.006 Aa 0.522  0.009 Ba 0.525  0.010 Ba
500 0.573  0.008 Ab 0.487  0.011 Bb 0.482  0.011 Bb

† SEV, severity; INC, incidence; FHBdx, Fusarium head blight index; FDK, Fusarium -damaged kernels; 
ISK, incidence, severity and kernel quality index; DON, deoxynivalenol concentration.
‡ RR, Ridge regression best linear unbiased prediction.
§ NET, ELASTIC-NET.
¶ LASSO, least absolute shrinkage and selection operator.
# Within rows, means followed by the same capital letter are not significantly different according to 
the Ryan–Einot–Gabriel–Welch multiple comparison test at  = 0.05 level. 
†† Within columns, means followed by the same lowercase letter are not significantly different accord-
ing to the Ryan–Einot–Gabriel–Welch multiple comparison test at  = 0.05 level. Genotypic missing 
data imputed by the expectation maximization imputation method. Training population size was equal 
to 218 and validation population size equal to 55. 
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(Table 2). We then ranked the 273 breeding lines accord-
ing to their GEBV and PEBV for ISK. When comparing 
the top 5% of both ranks, we observed that nine lines 

out of 14 overlapped in the two ranks. The number of 
overlapping lines increased to 20 (out of 27) and 39 (out 
of 54) lines when the top 10 and 20% was considered, 
respectively. For DON, 10, 22, and 40 lines, respectively, 
overlapped for the top 5, 10, and 20%.

Figure 3. Fivefold cross validated genomic selection accuracies for six Fusarium head blight (FHB)-related traits as a function of genomic 
selection models and single-nucleotide polymorphism (SNP) numbers. (a) SEV (severity); (b) INC (incidence); (c) FHBdx (FHB index); (d) 
FDK (Fusarium-damaged kernels); (e) ISK (incidence, severity and kernel quality index); (f) DON (deoxynivalenol concentration). RR, 
ridge regression best linear unbiased prediction; NET, elastic net; LASSO, least absolute shrinkage and selection operator. Genomic-
estimated breeding values estimated using 218 lines in the training population, 55 lines in the validation population, and genotypic 
missing value imputed by the expectation maximization imputation method.

Figure 5. Mean fivefold cross-validated prediction accuracies 
calculated using the realized marker-based kinship (K) and the 
pedigree-based (A) matrices for six traits associated with Fusar-
ium head blight (FHB) resistance. Genomic-estimated breeding 
values (GEBVs) estimated using 218 lines in the training popula-
tion, 55 lines in the validation population, and genotypic miss-
ing data imputed by the expectation maximization imputation 
method. Error bars represent  standard error of the mean.

Figure 4. The effect of training population (TP) size on genomic 
selection accuracy for six Fusarium head blight (FHB)-related 
traits. FDK, Fusarium-damaged kernels; ISK, incidence, severity 
and kernel quality index; DON, deoxynivalenol concentration; 
INC, incidence; FHBdx, FHB index; SEV, severity. Genomic-esti-
mated breeding values estimated by ridge regression best-unbi-
ased linear predictor, 55 lines in the validation population, and 
genotypic missing data imputed by the expectation maximization 
imputation method.
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Discussion

Genotypes and Imputation Methods
A collection of 273 breeding lines in use at the University 
of Illinois’ soft red winter wheat breeding program was 
used to develop GS models for traits associated with FHB 
resistance. Cultivars with higher levels of resistance to 
this disease are urgently needed across the United States. 
Five thousand and fifty-four SNPs were called by GBS 
and the UNEAK pipeline (Lu et al., 2013). Allelic effects 
of each marker were estimated and used to calculate 
GEBVs for the lines.

Five different imputation methods were compared in 
terms of GS accuracy. The EMI, SVDI, kNNI, RFI, and 
MNI methods had roughly equivalent performance for all 
traits. At the same level of missing data (20%), Rutkoski 
et al. (2013) found similar results. Moreover, they demon-
strated that these imputation methods tend to show differ-
ences with respect to GS accuracy as the level of missing 
data increases. Poland et al. (2012a) found no difference 
in GS accuracy for wheat traits when imputation meth-
ods were compared, even working with up to 80% miss-
ing data per marker. In this study, EMI was numerically 
superior for two traits (FDK and INC) and required only 1 
min and 10 s to run a complete set of imputations for one 
data set. At the same time, RFI required over 8 h and did 
not result in higher GS accuracy for any traits. Two other 
methods, kNNI and SVDI, required almost 1 min to run 
one set of imputations, and MNI required less than 30 s, 
but this method resulted in the lowest accuracies.

We preferred to work with a low level of missing data 
for two reasons. First, the GS analysis gets computation-
ally intensive as the number of SNP increases. Second, a 
total of 5054 SNPs were called with 20% missing data per 
markers. Genomic selection analyses with a larger number 
of SNPs were performed, but the increments in accuracy 

were not substantial enough to justify the inclusion of 
larger marker sets in our analysis (data not shown).

Genomic Selection Models and Single-Nucleo-
tide Polymorphism Number
In this study, RR-BLUP, LASSO, and elastic net were com-
pared for six traits that included random subsets of the 
5054 SNPs that varied in size. The RR-BLUP method is 
based on an infinitesimal model where all predictors are 
maintained in the analysis, resulting in a nonparsimoni-
ous model. In contrast, the LASSO performs variable 
selection and keeps a subset of predictors in the model, 
which is a reasonable assumption in plant breeding, as 

Figure 7. Distribution of phenotypically estimated breeding val-
ues (PEBVs) and genomic-estimated breeding values (GEBVs) 
obtained from fivefold cross validation for (a) incidence, severity 
and kernel quality index and (b) deoxynivalenol concentration 
(DON). Genomic-estimated breeding values estimated using 
ridge regression best linear unbiased prediction, 218 lines in the 
training population, 55 lines in the validation population, and 
genotypic missing data imputed by the expectation maximization 
imputation method.

Figure 6. Mean fivefold cross-validated prediction accuracies 
with (cluster) and without (random) control for relatedness of 
individuals in the training and validation populations. Genomic-
estimated breeding values estimated using ridge regression best 
linear unbiased prediction, 218 lines in the training population, 
55 lines in the validation population, and genotypic missing data 
imputed by the expectation maximization imputation method. 
Error bars represent  standard error of the mean.
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some SNPs are expected to not be associated with the 
response variable. However, this method has its shortcom-
ings; in particular, it can be unstable with high-dimension 
data. In addition, the LASSO tends to be problematic 
when the predictor variables are highly correlated, but that 
should not be the case in this study, as SNPs exhibiting 
pairwise correlations exceeding r2 ≥  0.8 were not used. 
The elastic net can be seen as a combination of both meth-
ods. For most traits, we obtained higher values of accuracy 
when using RR-BLUP than with the other methods. In 
only one situation (trait = INC and SNP number = 4500) 
did the LASSO and elastic net provide numerically higher 
accuracies, although they were not significantly different 
from RR-BLUP. This led to the conclusion that, for the 
traits used in this study, a model with a very large number 
of small-effect SNPs is more appropriate than a reduced 
model. It has been suggested that the LASSO is better 
suited for situations when large-effect genes are present. It 
is possible that such genes are present in our germplasms 
for INC and possibly for other traits. Even so, the superior-
ity of RR-BLUP was demonstrated.

Higher prediction accuracies were observed as the 
number of SNP included in the models increased; how-
ever, diminishing gains were observed in most cases 
after including more than 1500 or 3000 SNPs, depending 
on the trait. The increase in accuracy as result of higher 
marker density has been reported in GS studies with 
maize (Lorenzana and Bernardo, 2009), wheat (Heffner et 
al., 2011), and oat (Avena sativa L.) (Asoro et al., 2011). In 
these studies, diminishing gains after a certain number 
of markers was the overall trend, although Asoro et al. 
(2011) did not observe a plateau for four out of five traits. 
A key feature of GS is that markers covering the entire 
genome would potentially explain all genotypic variabil-
ity (Meuwissen et al., 2001; Goddard and Hayes, 2007). 
Thus, if marker coverage is sufficient, and markers are in 
linkage disequilibrium with QTL, high prediction accu-
racies are expected. Our data suggested that appropriate 
marker coverage was obtained with at least 3000 SNPs.

Training Population Size
A significant increase in accuracy was observed when 
more breeding lines were included in the TP. The overall 
rate of gain averaged over the six traits we measured was 
comparable to a study in wheat conducted by Heffner et al. 
(2011), although they worked with different traits. In con-
trast to their results, a plateau in accuracy was observed 
when nTP > 192 for all traits except FHBdx. In future proj-
ects, we plan to include more breeding lines in the training 
set. The impact of the training population size on accuracy 
was assessed in other crops such as barley (Hordeum vul-
gare L.) (Lorenz et al., 2012), oat (Asoro et al., 2011), wheat 
(Heffner et al., 2011), sugar beet (Beta vulgaris L. subsp. 
vulgaris) (Würschum et al., 2013), and maize (Crossa et al., 
2014). Lorenz et al. (2012) reported diminishing returns 
for prediction accuracies of DON and FHB resistance 
when nTP > 200 with no real gain when nTP changed from 
200 to 300 barley lines. Considering that expected accu-
racy depends on nTP, h

2, and the number of loci involved 
(Daetwyler et al., 2008), we would need to increase the 
genetic variability of the germplasm and the number of 
testing environments to obtain higher accuracies.

Pedigree-Based versus Marker-Based 
Relationship Matrices
Significantly higher genomic prediction values were 
obtained with the K matrix, as compared with the A 
matrix. Averaged across all traits, gains in predictive 
ability increased 72.5% by using marker information. In 
animal sciences, the advantage of markers over pedigree 
for prediction purposes has been demonstrated (Hayes et 
al., 2009; Vela-Avitúa et al., 2015). In wheat, Crossa et al. 
(2010) compared pedigree-based models with GS models 
using a diverse collection of 599 historical lines from the 
CIMMYT Global Wheat Breeding program. Compared 
with pedigree-based models, GS models for grain yield 
using 1279 DArT markers resulted in gains ranging from 
7.7 to 35.7%, depending on the model. We speculate that 
the striking difference in prediction accuracy observed 
for markers over pedigree in our study is most likely due 
to imprecise pedigree information. It is possible that a 
given wheat line or cultivar was named differently by 
multiple breeders. It is also likely that following pedi-
grees back beyond the grandparental generation would 
have resulted in the discovery of additional relationships. 
Both of these factors could cause our A matrix to under-
estimate the coefficient of coancestry of a pair of lines.

In a breeding context, we believe GS is likely to 
become the strategy of choice for prediction purposes. 
Although obtaining marker data involves costs and 
pedigree information does not, pedigrees can sometimes 
be difficult to obtain, especially for older or proprietary 
germplasm. In addition, sequencing costs have been 
decreasing over time (Wetterstrand, 2015), allowing even 
small, public breeding programs to obtain high density 
marker information.

Table 2. Estimate ( standard error of the mean) and 
99% confidence interval of unbiasedness for six Fu-
sarium head blight-related traits.

Trait† b (PEBV, GEBV)
‡ 99% confidence interval

SEV 0.958  0.0517 0.9067 1.0010
INC 1.024  0.0759 0.9483 1.1002
FHBdx 0.994  0.0535 0.9405 1.0475
FDK 1.033  0.0468 0.9862 1.0799
ISK 1.034  0.0468 0.9869 1.0805
DON 0.984  0.0615 0.9228 1.0459
† SEV, severity; INC, incidence; FHBdx, Fusarium head blight index; FDK, Fusarium -damaged kernels; 
ISK, incidence, severity and kernel quality index; DON, deoxynivalenol concentration.
‡ Unbiasedness estimated by the slope of the linear regression of phenotypically estimated breeding 
values (PEBVs) on genomic-estimated breeding values (GEBVs). The GEBVs were calculated using ridge 
regression best-unbiased linear predictor with 5054 SNPs, genotypic missing data imputed by the 
expectation maximization imputation method, with 218 lines in the training population and 55 lines 
in the validation population. Confidence interval based on 60 values of the slope.
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Controlling for Relatedness in the Training  
and Validation Populations
The germplasm used in this study consisted mainly of 
breeding lines from or in use at the University of Illi-
nois. As consequence, several closely related lines were 
present, especially half-sibs and some full-sibs. In cross-
validation schemes, overestimated prediction accuracies 
can be obtained if related lines are present in both TP 
and VP sets. To avoid such situation, the k-means clus-
tering method was used on marker data to group geneti-
cally similar lines, and the folds were built out of the 
clusters. For two traits, DON and FHBdx, the reduction 
in prediction accuracy was as high as 15%, in relation to 
the random situation. Averaged across all traits, a 10% 
reduction was observed. In a cassava (Manihot esculenta 
Crantz) study, Ly et al. (2013) observed a similar level of 
reduction averaged across 19 traits.

Genomic-Estimated Breeding Values and 
Phenotypically Estimated Breeding Values
A high agreement between PEBVs and GEBVs was 
observed for traits associated with FHB resistance. Con-
sequently, wheat lines with higher levels of resistance can 
be selected even before being planted. At the University 
of Illinois’ wheat breeding program, great emphasis is 
placed on ISK and DON when making selections. For 
these two traits, we showed that the most resistant lines 
would have been selected using both GEBV and PEBV. 
These results are encouraging from a breeding perspec-
tive, as selection based on GEBVs could save time and 
resources associated with phenotyping and still being 
able to identify the most resistant lines.

Conclusions
Most of the germplasm used in this study is primar-
ily represented by breeding lines from the University of 
Illinois soft red wheat program. This study showed that 
moderate to high genomic prediction accuracies can be 
achieved for FHB resistance-related traits when imple-
mented in a breeding program. The RR-BLUP method 
outperformed the other models for all traits. We also 
demonstrated that moderate to high prediction accura-
cies can be obtained even with a reduced set of SNPs and 
as few as 96 lines in the training set. The results show 
that GS can indeed be a promising strategy when breed-
ing for FHB resistance.

Historically, breeders have relied on phenotypic 
selection and, to some extent, on marker-assisted selec-
tion when breeding for FHB resistance. The cooperative 
system of nurseries and research projects supported by 
the USDA–ARS under the US Wheat and Barley Scab 
Initiative (USWBSI) has greatly improved our knowledge 
about the disease and has been important for incorporat-
ing resistance into cultivars. Our results support GS as 
a feasible breeding strategy for FHB resistance, aiding 
the strategies already implemented by breeders and the 
USWBSI. We plan to apply GS to calculate GEBVs in the 

F4:5 generation to reduce the number of lines tested in 
replicated field trials. Additionally, GEBVs can be used to 
select which lines will compose the crossing blocks. Hef-
fner et al. (2010) provide a framework for incorporating 
GS in a winter wheat breeding program based on single-
seed descent. Finally, doubled-haploid-based programs 
could benefit even more from GS, as the number of lines 
to be field evaluated could be drastically reduced as soon 
as the doubled-haploid lines are available.

Acknowledgments
The authors are grateful to Dr. Yanhong Dong from the University of Min-
nesota for deoxynivalenol determination and to the reviewers and associ-
ate editor for valuable suggestions. This material is based on work sup-
ported by the USDA, under Agreement No. 59-0206-9-080. This is a coop-
erative project with the US Wheat & Barley Scab Initiative. The first author 
gratefully acknowledges the graduate fellowship from Monsanto, Inc.

References
Albrecht, T., V. Wimmer, H.J. Auinger, M. Erbe, C. Knaak, M. Ouzunova, et 

al. 2011. Genome-based prediction of testcross values in maize. Theor. 
Appl. Genet. 123:339–350. doi:10.1007/s00122-011-1587-7

Asoro, F.G., M.A. Newell, W.D. Beavis, M.P. Scott, and J.-L. Jannink. 2011. 
Accuracy and training population design for genomic selection on 
quantitative traits in elite North American oats. Plant Gen. 4:132–144. 
doi:10.3835/plantgenome2011.02.0007

Bai, G.H., G. Shaner, and H. Ohm. 2000. Inheritance of resistance to Fusar-
ium graminearum in wheat. Theor. Appl. Genet. 100:1–8. doi:10.1007/
PL00002902

Bernardo, R. 2010. Breeding for quantitative traits in plants. 2nd ed. 
Stemma Press, Woodbury.

Buerstmayr, H., T. Ban, and J.A. Anderson. 2009. QTL mapping and 
marker-assisted selection for Fusarium head blight resistance in wheat: 
A review. Plant Breed. 128:1–26. doi:10.1111/j.1439-0523.2008.01550.x

Crossa, J., G. De Los Campos, P. Pérez, D. Gianola, J. Burgueño, J.L. Araus, 
et al. 2010. Prediction of genetic values of quantitative traits in plant 
breeding using pedigree and molecular markers. Genetics 186:713–724. 
doi:10.1534/genetics.110.118521

Crossa, J., P. Pérez, J. Hickey, J. Burgueño, L. Ornella, J. Cerón-Rojas, et 
al. 2014. Genomic prediction in CIMMYT maize and wheat breeding 
programs. Heredity 112:48–60. doi:10.1038/hdy.2013.16

Daetwyler, H.D., B. Villanueva, and J.A. Woolliams. 2008. Accuracy of 
predicting the genetic risk of disease using a genome-wide approach. 
PLoS ONE 3: E3395. doi:10.1371/journal.pone.0003395.

Dekkers, J.C.M. 2007. Prediction of response to marker-assisted and 
genomic selection using selection index theory. J. Anim. Breed. Genet. 
124:331–341. doi:10.1111/j.1439-0388.2007.00701.x

Dempster, A.P., N.M. Laird, and D.B. Rubin. 1977. Maximum likelihood 
from incomplete data via the EM algorithm. J. R. Stat. Soc., B 39:1–38.

Dexter, J.E., R.M. Clear, and K.R. Preston. 1996. Fusarium head blight: 
Effect on the milling and baking of some Canadian wheat. Cereal 
Chem. 73:695–701.

Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler, 
et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach 
for high diversity species. PLoS ONE 6:E19379. doi:10.1371/journal.
pone.0019379

Endelman, J.B. 2011. Ridge regression and other kernels for genomic selec-
tion with R package rrBLUP. Plant Gen. 4:250–255. doi:10.3835/plantge-
nome2011.08.0024

Fehr, W.R. 1991. Principles of cultivar development. V1: Theory and tech-
nique. Iowa State Univ. Press, Ames.

Friedman, J., T. Hastie, and R. Tibshirani. 2010. Regularization paths for 
generalized linear models via coordinate descent. J. Stat. Softw. 33:1–22.

Gianola, D. 2013. Priors in whole-genome regression: The Bayesian alphabet 
returns. Genetics 194:573–596. doi:10.1534/genetics.113.151753

Goddard, M.E., and B.J. Hayes. 2007. Genomic selection. J. Anim. Breed. 
Genet. 124:323–330. doi:10.1111/j.1439-0388.2007.00702.x

Hartigan, J.A., and M.A. Wong. 1979. Algorithm AS 136: A K-means clus-
tering algorithm. Appl. Stat. 28:100–108. doi:10.2307/2346830

http://dx.doi.org/10.1007/s00122-011-1587-7
http://dx.doi.org/10.3835/plantgenome2011.02.0007
http://dx.doi.org/10.1007/PL00002902
http://dx.doi.org/10.1007/PL00002902
http://dx.doi.org/10.1111/j.1439-0523.2008.01550.x
http://dx.doi.org/10.1534/genetics.110.118521
http://dx.doi.org/10.1038/hdy.2013.16
http://dx.doi.org/10.1371/journal.pone.0003395
http://dx.doi.org/10.1111/j.1439-0388.2007.00701.x
http://dx.doi.org/10.1371/journal.pone.0019379
http://dx.doi.org/10.1371/journal.pone.0019379
http://dx.doi.org/10.3835/plantgenome2011.08.0024
http://dx.doi.org/10.3835/plantgenome2011.08.0024
http://dx.doi.org/10.1534/genetics.113.151753
http://dx.doi.org/10.1111/j.1439-0388.2007.00702.x
http://dx.doi.org/10.2307/2346830


12 of 12	 the plant genome  november 2015  vol. 8, no. 3

Hayes, B.J., P.M. Visscher, and M.E. Goddard. 2009. Increased accuracy of 
artificial selection by using the realized relationship matrix. Genet. Res. 
91:47–60. doi:10.1017/S0016672308009981

Heffner, E.L., J.L. Jannink, and M.E. Sorrells. 2011. Genomic selection accu-
racy using multifamily prediction models in a wheat breeding program. 
Plant Gen. 4:65–75. doi:10.3835/plantgenome.2010.12.0029

Heffner, E.L., A.J. Lorenz, J.L. Jannink, and M.E. Sorrells. 2010. Plant 
breeding with genomic selection: Gain per unit time and cost. Crop Sci. 
50:1681–1690. doi:10.2135/cropsci2009.11.0662

Heffner, E.L., M.E. Sorrels, and J.-L. Jannink. 2009. Genomic selection for 
crop improvement. Crop Sci. 49:1–12. doi:10.2135/cropsci2008.08.0512

Heslot, N., H.P. Yang, M.E. Sorrels, and J.L. Jannink. 2012. Genomic selec-
tion in plant breeding: A comparison of models. Crop Sci. 52:14–160. 
doi:10.2135/cropsci2011.06.0297

Hoerl, A.E., and R.W. Kennard. 1970. Ridge regression: Biased estimation 
for nonorthogonal problems. Technometrics 12:55–67. doi:10.1080/004
01706.1970.10488634

Isidro, J., J.-L. Jannink, D. Akdemir, J.A. Poland, N. Heslot, and M.E. 
Sorrels. 2015. Training set optimization under population structure 
in genomic selection. Theor. Appl. Genet. 128:145–158. doi:10.1007/
s00122-014-2418-4

Jannink, J.L., A.J. Lorenz, and H. Iwata. 2010. Genomic selection in plant 
breeding: From theory to practice. Brief. Funct. Genomics 9:166–177. 
doi:10.1093/bfgp/elq001

Lado, B., I. Matus, A. Rodríguez, L. Inostroza, J.A. Poland, F. Belzile, et 
al. 2013. Increased genomic prediction accuracy in wheat breeding 
through spatial adjustment of field trial data. G3 3:2105-2114.

Li, H., and R. Durbin. 2009. Fast and accurate short read alignment 
with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. 
doi:10.1093/bioinformatics/btp324

Lipka, A.E., F. Lu, J.H. Cherney, E.S. Buckler, M.D. Casler, and D.E. Cos-
tich. 2014. Accelerating the switchgrass (Panicum virgatum L.) breed-
ing cycle using genomic selection approaches. PLoS ONE 9:E112227. 
doi:10.1371/journal.pone.0112227

Liu, S., Z.A. Abate, and A.L. McKendry. 2005. Inheritance of Fusarium 
head blight resistance in the soft red winter wheat Ernie. Theor. Appl. 
Genet. 110:454–461. doi:10.1007/s00122-004-1852-0

Lorenz, A., S. Chao, F.G. Asoro, E.H. Heffner, T. Hayashi, H. Iwata, et al. 
2011. Genomic selection in plant breeding: Knowledge and prospects. 
Adv. Agron. 110:77–123. doi:10.1016/B978-0-12-385531-2.00002-5

Lorenz, A.J., K.P. Smith, and J.L. Jannink. 2012. Potential and optimiza-
tion of genomic selection for Fusarium head blight resistance in six-row 
barley. Crop Sci. 52:1609–1621. doi:10.2135/cropsci2011.09.0503

Lorenzana, R.E., and R. Bernardo. 2009. Accuracy of genotypic value pre-
dictions for marker-based selection in biparental plant populations. 
Theor. Appl. Genet. 120:151–161. doi:10.1007/s00122-009-1166-3

Lu, F., A.E. Lipka, J. Glaubitz, R. Elshire, J.H. Cherney, M.D. Casler, et 
al. 2013. Switchgrass genomic diversity, ploidy, and evolution: Novel 
insights from a network-based SNP discovery protocol. PloS Gen. 
9:E1003215. doi:10.1371/journal.pgen.1003215

Ly, D., M. Hamblin, I. Rabbi, G. Melaku, M. Bakare, H.G. Gauch, Jr., et al. 
2013. Relatedness and genotype  environment interaction affect pre-
diction accuracies in genomic selection: A study in cassava. Crop Sci. 
53:1312–1325. doi:10.2135/cropsci2012.11.0653

Mesterházy, A. 1995. Types and components of resistance to Fusarium head 
blight of wheat. Plant Breed. 114:377–386. doi:10.1111/j.1439-0523.1995.
tb00816.x

Mesterházy, A., T. Bartók, C.G. Mirocha, and R. Komoróczy. 1999. Nature 
of wheat resistance to Fusarium head blight and the role of deoxyni-
valenol for breeding. Plant Breed. 118:97–110. doi:10.1046/j.1439-
0523.1999.118002097.x

Meuwissen, T.H.E., B.J. Hayes, and M.E. Goddard. 2001. Prediction of 
total genetic value using genome-wide dense marker maps. Genetics 
157:1819–1829.

Miedaner, T., F. Wilde, B. Steiner, H. Buerstmayr, V. Korzun, and E. 
Ebmeyer. 2006. Stacking quantitative trait loci (QTL) for Fusarium 
head blight resistance from non-adapter sources in an European elite 
spring wheat background and assessing their effects on deoxynivalenol 
(DON) content and disease severity. Theor. Appl. Genet. 112:562–569. 
doi:10.1007/s00122-005-0163-4

Miller, J.D., J.C. Young, and D.R. Sampson. 1985. Deoxynivalenol and 
Fusarium head blight resistance in spring cereals. J. Phytopathol. 
113:359–367. doi:10.1111/j.1439-0434.1985.tb04837.x

Ogutu, J.O., T. Schulz-Streeck, and H.P. Piepho. 2012. Genomic selection 
using regularized linear regression models: Ridge regression, lasso, 
elastic net and their extensions. BMC Proceedings 6:S10.

Poland, J.A., P.J. Brown, M.E. Sorrells, and J.L. Jannink. 2012a. Develop-
ment of high-density genetic maps for barley and wheat using a novel 
two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:E32253. 
doi:10.1371/journal.pone.0032253

Poland, J.A., J. Endelman, J. Dawson, J. Rutkoski, S. Wu, Y. Manes, 
et al. 2012b. Genomic selection in wheat breeding using genotyp-
ing-by-sequencing. Plant Gen. 5:103–113. doi:10.3835/plantgen-
ome2012.06.0006

Riedelsheimer, C., J.B. Endelman, M. Stange, M.E. Sorrells, J.L. Jannink, 
and A.E. Melchinger. 2013. Genomic predictability of interconnected 
bi-parental maize populations. Genetics 194:493–503. doi:10.1534/
genetics.113.150227

Rutkoski, J.E., J. Benson, Y. Jia, G. Brown-Guedira, J.L. Jannink, and M.E. 
Sorrells. 2012. Evaluation of genomic prediction methods for Fusarium 
head blight resistance in wheat. Plant Gen. 5:51–61. doi:10.3835/plantge-
nome2012.02.0001

Rutkoski, J.E., J.A. Poland, J.L. Jannink, and M.E. Sorrells. 2013. Imputa-
tion of unordered markers and the impact on genomic selection accu-
racy. G3 3:427-39.

SAS Institute. 2013. The SAS System for Windows. Version 9.3. SAS Inst. 
Inc., Cary, NC.

SAS Institute. 2014. JPM Genomics System for Windows. Version 7. SAS 
Inst. Inc., Cary, NC.

SAS Institute. 2015. JPM Pro System for Windows. Version 12. SAS Inst. 
Inc., Cary, NC.

Schroeder, H.W., and J.J. Christensen. 1963. Factors affecting resistance of 
wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838.

Snijders, C.H.A. 1990. The inheritance of resistance to head blight 
caused by Fusarium culmorum in winter wheat. Euphytica 50:11–18. 
doi:10.1007/BF00023155

Stekhoven, D.J., and P. Bühlmann. 2011. MissForest—Nonparametric miss-
ing value imputation for mixed-type data. Bioinformatics 28:112–118. 
doi:10.1093/bioinformatics/btr597

Tibshirani, R. 1996. Regression shrinkage and selection via the Lasso J. R. 
Stat. Soc. B 58:267–288.

Troyanskaya, O., M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, 
et al. 2001. Missing value estimation methods for DNA microarrays. 
Bioinformatics 17:520–525. doi:10.1093/bioinformatics/17.6.520

Tuite, J. 1969. Plant pathological methods: Fungi and bacteria. Burgess 
Publishing Company, Minneapolis, MN.

Van Ginkel, M.V., W.V.D. Schaar, and Y. Zhuping. 1996. Inheritance of 
resistance to scab in two wheat cultivars from Brazil and China. Plant 
Dis. 80:863–867. doi:10.1094/PD-80-0863

Vela-Avitúa, S., T.H.E. Meuwissen, T. Luan, and J. Ødegård. 2015. Accuracy 
of genomic selection for a sib-evaluated trait using identity-by-state and 
identity-by-descent relationships. Genet. Sel. Evol. 47:9. doi:10.1186/
s12711-014-0084-2

Wetterstrand, K.A. 2015. DNA sequencing costs: Data from the NHGRI 
large-scale genome sequencing program. National Human Genome 
Research Institute, Bethesda, MD. http://www.genome.gov/sequencing-
costs (accessed 06 Jun. 2015).

Würschum, T., J.C. Reif, T. Kraft, G. Janssen, and Y. Zhao. 2013. Genomic 
selection in sugar beet breeding populations. BMC Genet. 14:85. 
doi:10.1186/1471-2156-14-85

Zhang, Z., U. Ober, M. Erbe, H. Zhang, N. Gao, J. He, et al. 2014. Improv-
ing the accuracy of whole genome prediction for complex traits using 
the results of genome wide association studies. PLoS ONE 9:e93017. 
doi:10.1371/journal.pone.0093017

Zhao, Y., M. Gowda, F.H. Longin, T. Würschum, N. Ranc, and J.C. Reif. 
2012. Impact of selective genotyping in the training population on 
accuracy and bias of genomic selection. Theor. Appl. Genet. 125:707–
713. doi:10.1007/s00122-012-1862-2

Zhong, S., J.C.M. Dekkers, R.L. Fernando, and J.L. Jannink. 2009. Fac-
tors affecting accuracy from genomic selection in populations derived 
from multiple inbred lines: A barley case study. Genetics 182:355–364. 
doi:10.1534/genetics.108.098277

Zou, H., and T. Hastie. 2005. Regularization and variable selection 
via the elastic net. J. R. Stat. Soc., B 67:301–320. doi:10.1111/j.1467-
9868.2005.00503.x

http://dx.doi.org/10.1017/S0016672308009981
http://dx.doi.org/10.3835/plantgenome.2010.12.0029
http://dx.doi.org/10.2135/cropsci2009.11.0662
http://dx.doi.org/10.2135/cropsci2008.08.0512
http://dx.doi.org/10.2135/cropsci2011.06.0297
http://dx.doi.org/10.1080/00401706.1970.10488634
http://dx.doi.org/10.1080/00401706.1970.10488634
http://dx.doi.org/10.1007/s00122-014-2418-4
http://dx.doi.org/10.1007/s00122-014-2418-4
http://dx.doi.org/10.1093/bfgp/elq001
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1371/journal.pone.0112227
http://dx.doi.org/10.1007/s00122-004-1852-0
http://dx.doi.org/10.1016/B978-0-12-385531-2.00002-5
http://dx.doi.org/10.2135/cropsci2011.09.0503
http://dx.doi.org/10.1007/s00122-009-1166-3
http://dx.doi.org/10.1371/journal.pgen.1003215
http://dx.doi.org/10.2135/cropsci2012.11.0653
http://dx.doi.org/10.1111/j.1439-0523.1995.tb00816.x
http://dx.doi.org/10.1111/j.1439-0523.1995.tb00816.x
http://dx.doi.org/10.1046/j.1439-0523.1999.118002097.x
http://dx.doi.org/10.1046/j.1439-0523.1999.118002097.x
http://dx.doi.org/10.1007/s00122-005-0163-4
http://dx.doi.org/10.1111/j.1439-0434.1985.tb04837.x
http://dx.doi.org/10.1371/journal.pone.0032253
http://dx.doi.org/10.3835/plantgenome2012.06.0006
http://dx.doi.org/10.3835/plantgenome2012.06.0006
http://dx.doi.org/10.1534/genetics.113.150227
http://dx.doi.org/10.1534/genetics.113.150227
http://dx.doi.org/10.3835/plantgenome2012.02.0001
http://dx.doi.org/10.3835/plantgenome2012.02.0001
http://dx.doi.org/10.1007/BF00023155
http://dx.doi.org/10.1093/bioinformatics/btr597
http://dx.doi.org/10.1093/bioinformatics/17.6.520
http://dx.doi.org/10.1094/PD-80-0863
http://dx.doi.org/10.1186/s12711-014-0084-2
http://dx.doi.org/10.1186/s12711-014-0084-2
http://dx.doi.org/10.1186/1471-2156-14-85
http://dx.doi.org/10.1371/journal.pone.0093017
http://dx.doi.org/10.1007/s00122-012-1862-2
http://dx.doi.org/10.1534/genetics.108.098277
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x

