
 The imputation methods performed equally well in terms of GS 

accuracy, with a numerical advantage for EMI in three out of six 

traits.

 A significant increase on accuracies was observed as the training 

population size increased. A plateau was observed for all traits when 

nTP>192, except for ISK. 

 The mean accuracy increased linearly with the ratio TP/VP, 

whereas the variance increases exponentially. The best combination 

of mean and variance was observed for TP/VP=0.8.

 We found a high agreement between PEBVs and GEBVs for all 

traits, especially for the mid values. Since the agreement is not 

perfect, some lines can be lost if the same threshold from PEBVs are 

used for GEBVs. Then, when performing selection, relaxing the 

GEBV threshold may be necessary in order to keep the promising 

lines. .  
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Objective

The aim of this work is to assess the effect of genotypic 

imputation methods, statistical models, marker density, and 

training population size on GS accuracy.

Materials and Methods

Germplasm: 273 lines from, or in use at the University of 

Illinois wheat breeding program. 

Phenotyping: Field evaluation in a scab nursery in Urbana-

IL in 2011, 2013, and 2014. BLUPs calculated for: severity 

(SEV), incidence (INC), FHB index (FHBdx=SEV x INC), 

kernels quality (FDK), ISK index (ISK=0.3xINC+0.3xSEV

+0.4xFDK), and deoxynivalenol concentration (DON).

Genotyping: Genotyping-by-sequencing used with three 

two-enzyme combinations: PstI-MspI, PstI-HinPI, and PstI-

BfaI. Sequence data obtained from Illumina HiSeq2000, and 

then analyzed with UNEAK (maf = 5%, missing data per 

marker ≤ 20%, and Fisher’s exact test at 0.001 level)

Imputation methods: mean imputation (MNI), singular 

value decomposition (SDVI), random forest regression 

(RFI), and expectation maximization (EMI).

Genetic structure: Assessed through principal component 

analysis (PCAs) using all 5054 markers in JMP Genomics.

Statistical models: marker effects estimated with ridge 

regression best linear unbiased predictor – rrBLUP, least 

absolute shrinkage and operator selector – LASSO, and 

ELASTIC NET. The R packages “rr-BLUP” and “glmnet” 

were used.

Marker density: random samples (p = 500, 1500, 3000, and 

4500 SNPs) obtained from a total 5054 SNPs.

Training population size (nTP): random samples of nTP=96, 

144, 192, and 218 were obtained from the 273 lines.

Accuracy: Calculated as  𝑟 𝐺𝐸𝐵𝑉: 𝑃𝐸𝐵𝑉 ℎ2, where r = 

Pearson’s correlation between genomic and phenotypically 

breeding values (GEBVs and PEBVs); ℎ2 = broad-sense 

heritability.

Mean comparison: Each analysis was repeated 300 times 

and the mean accuracies were compared using the Ryan-

Einot-Gabriel-Welch multiple comparison test at 0.05 

level with SAS PROC GLM.

Genomic Selection (GS) is breeding strategy aiming at 

selecting superior individuals based on their genomic 

estimated breeding values (GEBVs). The strategy is 

particularly promising for quantitative traits and requires 

dense, genome-wide marker data. Here we show how GS 

accuracies are affected by different parameters, for six 

traits associated with FHB resistance.

Introduction

Figure 1. Five fold cross validated genomic selection accuracies for six FHB-related traits as a function of genomic selection 

models and SNP numbers. A = SEV (severity), B = INC (incidence), C = FHBdx (FHB index), D = FDK (Fusarium damaged 

kernels), E = ISK (ISK index), F = DON (deoxynivalenol concentration). RR = ridge regression best unbiased linear 

predictor, NET = ELASTIC-NET, LASSO = least absolute shrinkage and selection operator. Error bars represent ± one 

standard error of the mean.

Figure 2. Five fold cross validated genomic selection

accuracies for six traits associated with FHB resistance

and four imputation methods. Methods receiving the same

letter do not differ according to the Ryan-Einot-Gabriel-

Welch multiple comparison test at 0.05 level. Error bars

represent ± one standard error of the mean.

Figure 3. The effect of training population (TP) size on

genomic selection accuracy for six FHB related traits.

The analysis were performed using rr-BLUP and 5054

SNPs, imputed by the EMI method. Error bars represent

± one standard error of the mean.

Figure 4. The effect of proportion of the training

population/validation population on genomic selection

accuracy for six FHB. The analysis were performed using

rr-BLUP and 5054 SNPs, imputed by the EMI method.

Error bars represent ± one standard error of the mean.

Figure 5. The effect of proportion of the training

population/validation population on the mean and

variance of genomic selection accuracies for DON

(deoxynivalenol concentration). The analysis were

performed using rr-BLUP and 5054 SNPs, imputed by the

EMI method.

Figure 1. Distribution of phenotypically estimated breeding values (PEBVs) and genomic estimated 

breeding values (GEBVs) for severity (A), incidence (B), FHB index (C), Fusarium diseased kernel (D), 

ISK index (E), and deoxynivalenol concentration (F). The GEBVs were calculated with the mean marker 

effect of 5054 SNPs after 300 runs, calculated with rr-BLUP. The genotypic data was imputed with the 

EMI method, and the training population size was 218. 

Conclusions

This study showed that moderate to high accuracies can be achieved 

for FHB resistance-related traits within the context of a breeding 

program. Ridge regression-BLUP outperformed the other models 

for all traits, even with its unrealistic assumption of all markers 

having the same variance. High accuracies can be obtained even 

with a reduced set of SNPs and a few hundred lines in the training 

set. These results are encouraging and show that genomic selection 

can indeed be a promising strategy when breeding for FHB 

resistance.

Figure 1. Principal component analysis of 273 breeding lines. Position of the lines in the coordinate system 

defined by first three principal components using all 5054 SNPs.  
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 With the GBS protocol and the UNEAK pipeline, we were able to call 

5054 high quality SNPs.

 Very low genetic structure exists in this collection, as revealed by the PC 

analysis. The first PC explained only 4.6% of the variability. 

 Moderate to high accuracies were obtained for the traits evaluated in this 

study. The lowest accuracies were observed for SEV (ranging from 0.38 to 

0.58), and the highest values were observed for FDK (ranging from 0.68 to 

0.87). 

 rr-BLUP outperformed the LASSO and ELASTIC-NET for all traits 

except INC (with SNP number ≥ 1500).

 Marker density had a significant effect on prediction accuracies, with 

diminishing increments after 1500 SNPs. 

Results


