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Abstract Genomic selection (GS) and marker-as-

sisted selection (MAS) rely on marker–trait associa-

tions and are both routinely used for breeding

purposes. Although similar, these two approaches

differ in their applications and how markers are used to

estimate breeding values. In this study, GS and MAS

were compared in their ability to predict six traits

associated with resistance to a destructive wheat

disease, Fusarium head blight (FHB). A panel con-

sisting in 273 soft red winter wheat lines from the US

Midwestern and Eastern regions was used in this

study. The statistical models for MAS were built using

Fhb-1, the best-studied quantitative trait loci (QTL)

for FHB resistance, and two sets of QTL: one

independently identified by other groups and a newer

set identified ‘‘in house’’. In contrast, genomic selec-

tion models relied on 19,992 SNPs distributed

throughout the genome. For the MAS and GS models,

marker effects were estimated with ordinary least

square and ridge regression best unbiased linear

prediction, respectively. Intermediate to high values

of prediction accuracy (0.4–0.9) were observed for

most GS models, with lower values (\0.3) found for

MAS models. Treating QTL as fixed effects in GS

models resulted in higher prediction accuracy when

compared with a GS model with only random effects,

but overestimated accuracies were obtained with in

house QTL. For the same selection intensity, GS

resulted in higher selection differentials than MAS for

all traits. Our results indicate that GS is a more

appropriate strategy than MAS for FHB resistance.

Keywords Molecular breeding � Genotyping-by-

sequencing � Fusarium graminearum � Marker-

assisted selection � Genomic selection �
Deoxynivalenol

Introduction

Several marker-based strategies are being applied in

modern plant breeding with the objective of selecting

individuals with superior performance; marker-as-

sisted selection (MAS) and genomic selection (GS) are
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two examples. In MAS, individual lines are selected

based on quantitative trait loci (QTL), which are

detected through linkage mapping (LM) or genome-

wide association studies (GWAS). While LM relies on

experimental populations with limited recombination

events, GWAS is performed on a panel or collection of

lines, taking advantage of all recombination events

that occurred throughout the history of the group of

lines, usually resulting in higher mapping resolution

when compared to LM (Myles et al. 2009). In both LM

and GWAS, genomic signals meeting a certain

threshold are declared statistically significant, and all

the remaining marker–trait associations are excluded

from further analysis. Thus, the number of markers per

trait used in traditional MAS is generally low. For

traits under complex genetic control, with multiple

small effect genes contributing to overall phenotypic

variation, MAS can be of limited use (Bernardo et al.

2008). In contrast, all available high-quality markers

are used in GS for modeling the performance of an

individual, regardless of the magnitude of their effect

(Meuwissen et al. 2001; Jannink et al. 2010). Given

that a marker set has genome-wide coverage, the GS

model should theoretically account for all QTL

underlying the trait being studied regardless of their

effect sizes (Goddard and Hayes 2007). Therefore, for

traits with complex inheritance, GS is expected to

outperform MAS.

During the last decade, a dramatic reduction in

sequencing cost has occurred (Wetterstrand et al.

2016) and numerous next-generation sequencing

platforms are now available to the plant research

community (Patel et al. 2015). As a result, high-

density genome-wide markers are becoming available

for most crops, making MAS and GS even more

attractive. Assessing how these strategies compare is

important for making more rational and efficient use of

markers in a breeding pipeline. Heffner et al. (2011)

compared GS and MAS for 13 agronomic traits in

wheat and reported a 28 % advantage of GS over MAS

for prediction accuracy, defined as the correlation

between phenotypically estimated breeding values

(PEBVs) and genomic estimated breeding values

(GEBVs). Wang et al. (2014) found GS to outperform

MAS for agronomic and quality traits in inbred and

hybrid rye. In the case of grain yield, prediction

accuracy increased from 0.12 (MAS) to 0.59 (GS) in

one population. However, genomic selection may not

always be more advantageous than MAS. For instance,

Zhao et al. (2014) compared both methods for heading

time and plant height in rye and found the best method

to be trait specific. Similarly, Owens et al. (2014)

reported that prediction accuracies of provitamin A

levels in maize grain using models with markers in the

vicinity of a priori biochemical pathway genes were

approximately equal to those obtained using models

that included genome-wide marker sets.

In GS, several statistical models are available for

estimating marker effects, each model with its own

assumptions and features (Heslot et al. 2012; Desta

and Ortiz 2014). A commonly used method is called

ridge regression-best unbiased linear prediction (RR-

BLUP), which is based on an infinitesimal model with

all markers sharing a common variance, and all effects

are shrunken toward zero. When major genes are

present, RR-BLUP will underestimate the variance

associated with these genes, and in such situations

alternate Bayesian GS models can provide higher

prediction accuracies (Resende et al. 2012). However,

for polygenic traits, this increase in accuracy relative

to RR-BLUP is usually small (VanRaden 2008; Moser

et al. 2009; Heffner et al. 2011; Resende et al. 2012).

Moreover, one important drawback of these Bayesian

models is that they are usually very computationally

demanding. Thus, an alternative is to treat major genes

as fixed effects in the infinitesimal GS model (e.g.,

RR-BLUP), which would theoretically lead to higher

accuracies compared to a situation in which all genes

or markers are treated equally (Bernardo 2014; Zhao

et al. 2014).

Fusarium head blight (FHB), caused by Fusarium

graminearum Schwabe [telemorph: Gibberella zeae

Schw. (Petch)], is a major wheat disease in most

growing areas, including the US Midwestern region

where the pathogen can overwinter on maize debris.

The pathogen causes significant grain yield reduction

(Madden and Paul 2009) and mycotoxin contamina-

tion in infected grain. Breeding for FHB resistance has

been challenging due to the complex nature of

resistance, and labor intensive phenotyping. In addi-

tion, MAS and GS for FHB resistance have been

hindered due to the delayed availability of high-

density, genome-wide markers compared to other

economically important crops. One major QTL on the

short arm of chromosome 3B, Fhb-1, has been

identified by independent studies. Additionally, mul-

tiple small effect QTL have been detected on nearly all

wheat chromosomes (Buerstmayr et al. 2009; Liu et al.
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2009; Loffler et al. 2009), which suggests a complex

genetic architecture for FHB resistance. Discovered in

Chinese spring wheat germplasm, Fhb-1 has been

introduced into spring and winter wheats in North

America (Jin et al. 2013) and worldwide. For more

than a decade, breeders have extensively used Fhb-1

and other QTL in their programs, and the levels of

FHB resistance in cultivars has improved; however,

developing elite, adapted cultivars with high levels of

FHB resistance remains difficult given the complex

genetic inheritance of resistance, labor intensive

phenotyping, and interaction with the environment.

Comparing marker-based strategies for FHB resis-

tance can help breeders decide on how to use markers

for selecting more resistant lines. Rutkoski et al.

(2012) tested MAS and GS for multiple parameters

associated with FHB resistance using a panel of 170

lines from the US cooperative FHB nursery. Working

with 2402 Diversity Array Technology (DArT) mark-

ers, the authors demonstrated the advantage of GS

over MAS. Since their study, marker coverage has

improved significantly and genotyping costs have

decreased dramatically. Recently, Jiang et al. (2015)

used 372 European varieties to compare how different

marker sets (782 single sequence repeats—SSRs, and

the 9 and 90 k single nucleotide polymorphism—

SNP—arrays) and relatedness affected prediction

accuracy for FHB index in a MAS and GS context,

separately. In our study, we compared MAS and GS

models using a panel of 273 breeding lines and SNPs

identified from genotyping-by-sequencing (GBS) (El-

shire et al. 2011). We also assessed the impact of

including markers linked to QTL as fixed effects into

GS models on genomic prediction accuracy.

Materials and methods

Plant material and phenotypes

A panel consisting of 273 breeding lines from multiple

institutions in the USA was used in this study. Most of

the lines originated from the University of Illinois soft

red winter wheat breeding program, while the remain-

ing lines came from breeding programs in the US

Midwestern and Eastern regions. The panel was

phenotyped as described in Arruda et al. (2015).

Briefly, six traits associated with FHB resistance were

recorded: severity (SEV), incidence (INC), FHB index

(FHBdx; [(SEV 9 INC)/100], Fusarium-damaged

kernel (FDK), incidence-severity-kernel index (ISK;

[0.3 9 INC ? 0.3 9 SEV ? 0.4 9 FDK]), and

mycotoxin accumulation (DON). SEV was recorded

as the percentage of infected spikelets within a wheat

head. INC is the percentage of infected heads in an

experimental unit. FDK was recorded as the visual

estimate of the percentage of Fusarium-damaged

kernels in a sample of kernels. DON was recorded

using gas chromatography–mass spectrometry at the

Department of Plant Pathology, University of Min-

nesota. Although the trait under consideration is FHB

resistance, the six traits described above may not be

controlled by the same genes, and thus we use the

terms ‘‘parameter’’ and ‘‘trait’’ interchangeably

throughout the manuscript. The experimental lines

were grown in Urbana, Illinois in 2011, 2013, and

2014. Each year, the experiment was set up as a

randomized complete block design (RCBD), with two

replications. Because not all lines were planted in

2011, the data were analyzed as an unbalanced design.

The experimental unit consisted of 1-m long single

rows cultivated in a scab nursery with mist irrigation

and grain spawn inoculation. Maize kernels were

infected with inoculum produced from isolates col-

lected throughout Illinois over several years, and

inoculum was spread in the field at a rate of

approximately 287 kg ha-1. For each trait, best linear

unbiased predictor (BLUP) was calculated for each

line using PROC MIXED SAS version 9.4 (SAS

Institute 2013), according to Eq. (1):

Yijkl ¼ lþ yeari þ block yearð Þij þ linek þ headingijkl

þ yearxlineð Þik þ eijkl

ð1Þ

where Yijkl is the observed phenotype, l is the overall

mean, yeari is the random effect of the ith year,

block(year)ij is the random effect of jth block within

the ith year, linek is the random effect of the kth line,

headingijk is a quantitative covariate trait treated as

fixed, consisting of the Julian date in which heading

was recorded for the lth replicate of the kth line in the

jth block within the ith year, year xlineik is the random

effect of the interaction between the ith year and the

kth line, and eijkl is the random error term. The BLUPs

were used as phenotypically estimated breeding

values (PEBVs) for model comparisons.
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Genotyping data

The procedures for single nucleotide polymorphism

(SNP) identification are described in Arruda et al.

(2016), and libraries were prepared for sequencing

based on the protocol of Poland et al. (2012). In short,

genotyping-by-sequencing (GBS) was employed on

the 273 breeding lines using three two-enzyme

combinations, where a rare cutter (PstI-HF) was

combined with three common cutters (MspI, HinP1I,

and BfaI) for genomic complexity reduction. TASSEL

GBS version 4 was used against a pseudo-reference

genome developed from the Chinese Spring chromo-

some survey sequence. The following SNP filtering

criteria were applied: (1) maximum per-marker miss-

ing data level of 50 %; (2) minimum allele frequency

of 5 %; (3) maximum heterozygosity level of 10 %;

iv) SNPs mapped to single chromosomes; v) after

imputing the missing data with the expectation

maximization method (Rutkoski et al. 2013), redun-

dant, non-informative SNPs were removed from the

analyses using the LD tagSNP selection option

(r2[ 0.8) in JMP Genomics 7 (SAS Institute 2015;

Carlson et al. 2004). At the end, 19,992 SNPs were

identified.

Quantitative trait loci (QTL) information

Marker-assisted selection and GS models were built

using different sets of QTL: Fhb-1; QTL identified by

independent groups, hereafter referred to as ‘‘inde-

pendent’’ QTL; and a set of ‘‘in house’’ QTL,

identified in our own panel consisting of the 273

breeding lines described above. The independent

group included three QTL on chromosomes 3B, one

of them being Fhb-1, one QTL on chromosome 5A,

and the plant height RhtD1 gene on chromosome 4D

(Table 1). These loci are associated with multiple

traits corresponding to FHB resistance. In addition,

they are routinely used by wheat breeders participating

in the US Cooperative FHB nurseries supported by the

US Wheat and Barley Scab Initiative (www.scabusa.

org). The in house QTL were identified in a GWAS

(Arruda et al. 2016) using a compressed unified mixed

linear model to assess marker–trait associations

(Zhang et al. 2010; Yu et al. 2006) in the Genome

Association and Prediction Integrated Tool package

(Lipka et al. 2012). This model included principal

components (Price et al. 2006) and a kinship matrix

(VanRaden 2008) calculated from the 19,992 SNPs to

account for population structure and familial related-

ness, respectively. The Benjamini and Hochberg

(1995) procedure was used to control for the multiple

testing problem at a false discovery rate (FDR) of

10 %. The number of significant in house QTL varied

with the trait under consideration (Table 2), with five

being the highest number of significant QTL for one

trait (INC). When building the MAS and GS models,

the top five markers with the lowest FDR-adjusted

P values were selected for each trait so that all traits

would have the same number of markers in their sta-

tistical models.

Comparison of models

Three models representing MAS (called MAS1,

MAS2, and MAS3) and five models representing GS

(called GS1 to GS5) were compared. The MAS

models were built with the following marker infor-

mation: only Fhb-1 for MAS1; independent QTL for

MAS2; and in house QTL for MAS3. Ordinary least

square (OLS) regression was used to estimate marker

effects for the MAS models. The GS models were

based on RR-BLUP under five different scenarios: all

19,992 SNPs treated as random effects in GS1; all

SNPs as random effects and five randomly selected

SNPs treated as fixed effects in GS2; all SNPs as

random effects and the signals corresponding to Fhb-1

treated as fixed effect in GS3; all SNPs as random

effects and independent QTL treated as fixed effects in

GS4; and lastly, all SNPs as random effects and in

house QTL treated as fixed effects in GS5. Both MAS3

and GS5 were specifically built to assess the magni-

tude of the ‘‘inside trading’’ effect, which has been

said to occur when prediction accuracies are assessed

using QTL that were identified in the same group of

lines, potentially resulting in inflated prediction

accuracies.

Prediction accuracy

A four-fold cross-validation scheme was used to

calculate prediction accuracy. Initially, the 273 lines

were divided into four groups, three groups compris-

ing the training population (TP) and one group

consisting of the validation population (VP). Predic-

tion accuracy was calculated according to Dekkers

(2007) and Albrecht et al. (2011):
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Table 1 Quantitative trait

loci (QTL) and reduced

height gene associated with

Fusarium head blight

resistance identified by

independent groups

Chromosome Gene/

QTL

Markers References

3B Fhb1 umn10 and

gwm533

Liu et al. (2008) and Zhou et al. (2002)

3B 3B-

Massey

IWA6105 and

IWA8137

Xiong (2013)

5A Qfhs.ifa-

5A

gwm304 Liu et al. (2007)

3B Fhb-3Bc KASP-Fhb-

3Bc-6105

Unpublished

4D RhtD1 wMAS000002 http://www.cerealsdb.uk.net/cerealgenomics/

CerealsDB/kasp_download.php?URL

Table 2 Chromosomal position, marker information, and coefficient of determination (r2) of the top five markers associated with

Fusarium head blight (FHB) resistance detected in a genome-wide association study (Arruda et al. 2016)

Trait Ca Pb SNP r2

SEV 3B 18.32c IWGSC_CSS_3B_ scaff _10676713_7175 0.08

3B 10.19c IWGSC_CSS_3B_ scaff _10352272_5482 0.05

3B 6.86 IWGSC_CSS_3B_ scaff _10698462_2332 0.04

3B 3.37c IWGSC_CSS_3B_ scaff _10699215_3620 0.04

4B 80.97 IWGSC_CSS_4BL_ scaff _7034084_1682* 0.04

INC 7D 70.84 IWGSC_CSS_7DS_ scaff _3876750_2023 0.16

6A 134.15 IWGSC_CSS_6AL_ scaff _5780077_12152 0.06

4D 0 IWGSC_CSS_4DS_ scaff _2300354_4482 0.06

4A 78.35 IWGSC_CSS_4AL_ scaff _7146617_11335 0.06

7A 22.82 IWGSC_CSS_7AS_ scaff _4132011_1400 0.05

FHBdx 3B 18.32c IWGSC_CSS_3B_ scaff _10676713_7175 0.07

6B 46.64 IWGSC_CSS_6BS_ scaff _2977132_3529* 0.05

7D 70.84 IWGSC_CSS_7DS_ scaff _3876750_2023* 0.04

3B 6.83 IWGSC_CSS_3B_ scaff _10698462_2332* 0.04

3B 10.19c IWGSC_CSS_3B_ scaff _10352272_5482* 0.04

FDK 1A 27.24 IWGSC_CSS_1AS_ scaff _3314747_2298* 0.05

3A 131.87 IWGSC_CSS_3AL_ scaff _4427089_5739* 0.04

4A 0 IWGSC_CSS_4AS_ scaff _5938251_8590* 0.04

7B 77.11 IWGSC_CSS_7BS_ scaff _3109240_581* 0.04

4A 78.35 IWGSC_CSS_4AL_ scaff _7110688_882* 0.04

ISK 3B 18.32c IWGSC_CSS_3B_ scaff _10676713_7175 0.07

7D 70.84 IWGSC_CSS_7DS_ scaff _3876750_2023 0.16

4A 78.35 IWGSC_CSS_4AL_ scaff _7110688_882* 0.04

3B 18.32 IWGSC_CSS_3B_scaff_10665035_6913* 0.03

5A 10.56 IWGSC_CSS_5AL_ scaff _2731838_4049* 0.04

DON 3B 73.67 IWGSC_CSS_3B_ scaff _10413672_4839 0.07

3B 18.32c IWGSC_CSS_3B_ scaff _10676713_7175 0.07

1D 19.04 IWGSC_CSS_1DS_ scaff _1879930_3352 0.06

3B 73.67 IWGSC_CSS_3B_ scaff _10764618_2168 0.06
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r GEBV :PEBVð Þ
ffiffiffiffiffiffi

H2
p ð2Þ

where r is the Pearson’s correlation between the

GEBVs and the PEBVs in the validation population,

and H2 is the broad-sense heritability, estimated by

Arruda et al. (2016). For each model and trait, 75 TPs

were randomly obtained, resulting in 300 values of

accuracy (the four-fold cross-validation resulted in

four values of accuracy for each randomly selected

TP). The mean prediction accuracy of the eight

models was compared in SAS PROC GLM using the

Ryan-Einot-Gabriel-Welch test at ? = 0.05 level.

We also calculated the mean prediction accuracy of

each model relative to GS1. Overestimation of

prediction accuracy can be obtained when closely

related lines such as full-sibs and/or half-sibs are in

the TP and VP. In order to avoid such a situation, the

273 breeding lines were grouped in 58 clusters of

genetically similar lines. Clusters were obtained in

JMP Pro 12 (SAS Institute 2015b) using the k-means

clustering algorithm (Hartigan and Wong 1979) on

marker data (Ly et al. 2013; Arruda et al. 2015). This

procedure grouped closely related lines in clusters.

Then, folds for cross-validation were created using the

cluster numbering (1–58). In other words, instead of

assigning breeding lines into TP and VP, the clusters

were used for such division, with all breeding lines

from the same cluster ending up in either TP or VP.

Prediction accuracies were calculated in R (R Devel-

opment Core Team 2013) using the ‘‘lm()’’ function

for the MAS models and the ‘‘mixed.solve()’’ function

of the rrBLUP package (Endelmann 2011) for the GS

models. The same folds were used to compare the

eight models.

Selection differential

The selection differential (S) is defined as the differ-

ence of mean values between the selected and

unselected group, and it is directly related to response

to selection (R): R = h2S, where h2 is the narrow-

sense heritability. Because we were not able to

estimate h2, the selection differential was obtained in

order to have an indication of R. Initially, GEBVs were

calculated for the breeding lines using the four-fold

cross-validation scheme described above. More

specifically, the genotypic matrix was multiplied by

the mean SNP effect across the 300 runs to obtain the

GEBVs. Then, for each trait, the 273 lines were ranked

based on their GEBVs (provided by MAS1, MAS2,

MAS3, GS1, GS2, GS3, GS4, and GS5). In other

words, eight different ranks were obtained for each

trait. The selection differential was then calculated as

the difference between the mean PEBV of the top 5,

10, 15, 20, and 25 % best lines and the mean PEBV of

the reference, unselected group of 273 lines.

Results

Cross-validated prediction accuracies for six traits

corresponding to FHB resistance are presented in

Fig. 1. Overall, intermediate to high values (0.4–0.9)

of accuracy were observed for most GS models, with

lower values (\0.3) found for MAS models. FDK

showed the highest values of prediction accuracy, with

the mean across all models equal to 0.63. Conversely,

the lowest mean value was observed for SEV (0.40). In

nearly all situations, the models with the highest and

lowest accuracies were obtained with GS5 and MAS1,

Table 2 continued

Trait Ca Pb SNP r2

2A 16.45 IWGSC_CSS_2AS_ scaff _5273750_3562* 0.05

SEV Severity, INC Incidence, FHBdx FHB index, FDK Fusarium-damaged kernel, ISK Incidence-severity-kernel, index, DON

deoxynivalenol concentration

* Not statistically significant (FDR-adjusted P value C0.10) in the genome-wide association study by Arruda et al. (2016)
a C = Chromosome
b P = genetic position in centimorgans (cM)
c SNPs in linkage disequilibrium with the SSRs markers umn10 and gwm533, used to detect Fhb-1
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respectively. In fact, a striking advantage of GS5 over

other models was observed for some traits such as

SEV and FHBdx, possibly reflecting the ‘‘inside

trading’’ effect. Averaged across all traits, GS5

showed a 32 % advantage relative to GS1. At the

same time, GS3 and GS4 were 8 and 5 % superior to

GS1 (Table 3).

For all traits except SEV, a significant difference

was detected between GS1 and GS2, with an advantage

for GS1 (Fig. 1). In other words, by treating some

Fig. 1 Cross-validated prediction accuracies for six traits

corresponding to Fusarium head blight (FHB) resistance:

severity (a), incidence (b), FHB index (c), Fusarium-damaged

kernel (d), incidence-severity-kernel index (e), and DON

concentration (f). MAS1 Marker-assisted selection with Fhb-1

using linear regression. MAS2 Marker-assisted selection with

‘‘independent’’ QTL using multiple linear regression. MAS3

Marker-assisted selection with ‘‘in house’’ QTL using multiple

linear regression. GS1 genomic selection with 19,992 SNPs.

GS2 genomic selection with 19,992 SNPs ? 5 randomly

selected SNPs treated as fixed effects. GS3 genomic selection

with 19,992 SNPs ? Fhb-1 treated as fixed effect. GS4 genomic

selection with 19,992 SNPs ? ‘‘independent’’ QTL treated as

fixed effects. GS5 genomic selection with 19,992 SNPs ? ‘‘in

house’’ QTL treated as fixed effects. All marker estimates were

obtained using a four-fold cross-validation scheme, 75 ran-

domly selected training populations (TP) of size 205 and

validation population (VP) of size 68. GS models were based on

ridge regression-best linear unbiased predictor (RR-BLUP), and

MAS models were based on ordinary least square (OLS)

regression. Treatments with the same letter are not significantly

different according to the Ryan–Einot–Gabriel–Welch q test at

a = 0.05 level. Graph produced using R (R Development Core

Team 2013)

Table 3 Prediction accuracy for traits corresponding to Fusarium head blight (FHB) resistance from marker-assisted selection

(MAS) and genomic selection (GS) models relative to GS1 (100)

Trait MAS1 MAS2 MAS3 GS1 GS2 GS3 GS4 GS5

SEV 68 76 92 100 97 119 117 151

INC 54 65 132 100 87 98 93 142

FHBdx 64 78 91 100 95 114 113 156

FDK 31 50 50 100 96 105 102 116

ISK 45 67 68 100 97 108 107 123

DON 40 73 82 100 91 103 102 103

Average 50 68 86 100 94 108 105 132

The mean prediction accuracy of each model was transformed having the mean prediction of GS1 = 100

SEV Severity, INC Incidence, FHBdx FHB index, FDK Fusarium-damaged kernel, ISK Incidence-severity-kernel, index, DON

Deoxynivalenol concentration

Mol Breeding  (2016) 36:84 Page 7 of 11  84 

123



randomly selected SNPs as fixed effect (GS2), a

reduction in accuracy was observed. In addition, no

difference was found between GS3 and GS4 for SEV,

FHBdx, and DON. For the other traits, GS3 resulted in

higher prediction accuracy. The difference between

GS3 and GS4 is inclusion of QTL identified by

independent groups on chromosomes 3B (3B-Massey

and Fhb-3Bc), 5A (Qfhs.ifa-5A), and the RhtD1 gene

on chromosome 4D, which are included in as fixed

effect in the GS4 model and not in the GS3 model.

These loci were not associated with FHB resistance in

our panel, possibly explaining the neutral or reducing

effect on accuracy in the genomic selection context;

however, in marker-assisted selection, having these

four markers added to Fhb-1 (MAS2) was more

beneficial than Fhb1 by itself (MAS1). A model with

one single marker is an over simplification of the

complex genetic architecture of FHB resistance, but it

reflects a breeding strategy that has been used by

breeders in the past and that is why it was included in

this study. By adding four extra markers, even if they

were loosely associated with FHB resistance in our

panel, an increase in accuracy was observed for all

traits. It is possible that these four markers are helping

to explain relatedness among the breeding lines, thus,

having a positive impact on accuracy. In genomic

selection, they may also be beneficial if treated as

random, but many thousands of SNPs are already

present. The best two models for INC, MAS3 and GS5,

both included the five significant in house QTL. This is

the only situation in which a MAS model was superior

to a GS model. The results for FDK and ISK were

similar to each other, with higher values of accuracy

observed for FDK. This similarity could possibly be

explained by the higher weight assigned to FDK when

calculating ISK (40 %), relative to the other traits

(30 % for SEV and 30 % for INC). A striking

difference was observed between the MAS models

and GS models for these two traits (Fig. 1d, e),

especially FDK. For instance, average MAS accuracies

Fig. 2 Selection differential for six traits corresponding to

Fusarium head blight (FHB) resistance: severity (a), incidence

(b), FHB index (c), Fusarium-damaged kernel (d), incidence-

severity-kernel index (e), and deoxynivalenol concentration (f).
The numbers on the x-axis represent the percentage of selected

lines after ranking 273 breeding lines according to GEBVs

estimated from five different models: MAS1 Marker-assisted

selection with Fhb-1 using linear regression. MAS2 Marker-

assisted selection with ‘‘independent’’ QTL using multiple

linear regression. MAS3 Marker-assisted selection with ‘‘in

house’’ QTL using multiple linear regression. GS1 genomic

selection with 19,992 SNPs. GS2 genomic selection with 19,992

SNPs ? 5 randomly selected SNPs treated as fixed effects. GS3

genomic selection with 19,992 SNPs ? Fhb-1 treated as fixed

effect. GS4 genomic selection with 19,992 SNPs ? ‘‘indepen-

dent’’ QTL treated as fixed effects. GS5 genomic selection with

19,992 SNPs ? ‘‘in house’’ QTL treated as fixed effects. Graph

produced using JMP (SAS 2015b)
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for FDK varied from 0.24 (MAS1) to 0.39 (MAS2 and

MAS3), whereas average GS accuracies varied from

0.74 (GS2) to 0.90 (GS5). The GS models showed high

accuracies for DON, but there were no significant

differences among GS1, GS3, GS4, and GS5.

The selection differential varied greatly between

MAS and GS models (Fig. 2). Compared to the other

traits, the change in the selection differential for DON

and FDK was less pronounced with the increase in

selection intensity when the MAS models were

applied, indicating these models were not appropriate

for ranking the breeding lines for these traits. This

could be due to the fact that other genomic regions

may contribute to variation in these two traits. In fact,

none of the SNPs used in MAS3 for FDK were

significant (Table 2). In the case of DON, the favor-

able alleles for the SNPs used in MAS3 are already in

high frequency (Arruda et al. 2016). Thus, little

change on the mean DON is expected when selecting

for these loci. For the other traits, the decrease in the

selection differential was more pronounced as more

lines were selected.

Discussion

Breeding for FHB resistance remains a major chal-

lenge among wheat breeders for several reasons. Since

the introgression of Fhb-1 from Sumai3 and its

derivatives into adapted germplasm in North America

(Jin et al. 2013), significant emphasis has been put on

using Fhb-1 and a few other QTL as targets for MAS.

Breeders have had success in selecting for FHB

resistance, with the level of FHB resistance in

commercial cultivars improving over the last two

decades for some breeding groups; however, many

factors including the complex genetic architecture of

FHB resistance, difficulties in precision phenotyping,

and delayed availability of high-density genome-wide

molecular markers in wheat have hindered progress in

breeding for resistance to this important disease.

In this study, we used 19,992 GBS-SNPs and QTL

information to build and compare marker-based

models for multiple traits corresponding to FHB

resistance. Genomic selection and MAS models were

designed in such a way that they would reflect

breeding strategies currently in use by breeders or

have potential to be used in the near future. Our results

showed that MAS can lead to poor accuracy for traits

associated with FHB resistance, especially when using

only Fhb-1 (MAS1). The poor performance of this

model could be associated with the low frequency of

Fhb-1 in our panel (5.5 %). At the same time, GS

models greatly outperformed MAS models for all

traits, particularly for FDK, which seemed to not be

controlled by large effect QTL. For one trait, INC,

MAS3 was able to provide accuracy values higher

than some GS models. It is possible that INC is under a

simpler genetic control when compared to the other

traits. This advantage could also be attributed to the

‘‘inside trading’’ effect. Also, the in house QTL

marker IWGS_CSS_7DS_scaff_3876750_2023 had

the highest r2 of any marker tested (Table 2). Zhao

et al. (2014) found MAS outperforming GS for

heading time in rye, but not for plant height. In their

study, the photoperiod insensitivity gene Ppd-D1 was

found to be associated with a single SNP, whereas

plant height was associated with 16 SNPs. A similar

conclusion was reached by Spindel et al. (2015), who

found MAS to outperform GS for flowering time in

rice, controlled by a large effect QTL, whereas RR-

BLUP outperformed MAS and other GS models for

grain yield, which is known to be quantitatively

inherited in rice.

An important assumption of RR-BLUP is that all

marker effects share a common variance, no matter

how important a particular marker may be for

explaining the variation of the trait. This is an

unrealistic assumption in the breeding context. By

treating QTL as fixed effects in GS models, the QTL

effect estimate is not forced to have the same variance

as those of the genome-wide markers, which could

lead to increased prediction accuracy. In this study,

setting QTL as fixed effects improved prediction

accuracy for all traits except DON. In fact, neither

Fhb-1 (GS3) nor QTL (GS4 and GS5) treated as fixed

effects resulted in higher accuracy for this trait.

Rutkoski et al. (2012) compared several GS models

and MAS for FHB resistance and concluded that GS

always outperformed MAS, but treating QTL as fixed

effects did not improve accuracy. However, in a recent

study with resistance to stem rust in wheat (caused by

Puccinia graminis f.sp. tritici), Rutkoski et al. (2014)

showed that treating major genes as fixed effects can

lead to higher GS prediction accuracy. We demon-

strated a 32 % advantage of GS model with in house

QTL treated as fixed, relative to a model with all SNPs

treated as random effects. At the same time, more
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modest advantage was observed when one (Fhb-1) or

multiple independentQTL were treated as fixed effect.

These results suggest the ‘‘inside trading’’ effect can

lead to upward biased genomic prediction accuracy. In

other words, by using the same panel of lines for QTL

identification and prediction analyses with those same

QTL, our results indicate that inflated estimation of

prediction accuracy can be obtained. To our knowl-

edge, this is the first study to quantify the ‘‘inside

trading’’ effect in a plant breeding program context.

Further analyses involving independent sets of breed-

ing lines and environments would help understanding

this effect in a broader context.

If treating QTL as fixed effect in the genomic selection

increases prediction accuracy, we wondered what would

have happened to accuracies if randomly selected markers

would have been chosen. Our results showed that accuracy

can be reduced by treating random SNPs as fixed effect.

For a marker not associated with the trait being tested, it is

preferable having this marker with effect estimate close to

zero than allowing it to have a larger influence on the

model (larger effect). In a simulation study, Bernardo

(2014) observed that having a single gene treated as fixed

in GS using RR-BLUP was never disadvantageous, except

when the variability explained by the major gene was

lower than 10 %. In our panel, all 19,992 SNPs but one

(IWGS_CSS_7DS_scaff_3876750_2023) explained less

than 10 % of the variability (Arruda et al. 2016).

Although the GS models differed in terms of

prediction accuracy, they performed equally well for

selection differential. One possible explanation is that

the differences in prediction from these GS models

were not enough to substantially change the order of

the breeding lines when they are ranked for a specific

trait. The same cannot be said for the MAS models,

with MAS3 resulting in higher selection differential

than MAS1 and MAS2 in nearly all scenarios. This

advantage of MAS3, however, is most likely due to the

‘‘inside trading’’ effect. Initially present at 5.5 % of

the breeding lines, Fhb-1 by itself (MAS1) was never

the best option, which is in accordance with the

complex genetic architecture of FHB resistance.

Conclusion

GS models greatly outperformed MAS models in both

prediction accuracy and selection differential for

parameters associated with FHB resistance. Treating

significant QTL as fixed effects in GS resulted in even

higher accuracies; however, accuracies can be inflated

by the ‘‘inside trading’’ effect. Although some GS

models were more accurate than others, the differ-

ences resulted in minimal change in the order of

GEBV ranks. These results indicate that GS is a more

appropriate marker-based strategy when breeding for a

complex trait such as FHB resistance.
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